

Oracle Space Management Handbook

Donald K. Burleson
Dave Ensor

Christopher Foot
Lisa Hernandez

Mike Hordila
Jonathan Lewis

Dave Moore
Arup Nanda

John Weeg

Oracle Space Management Handbook

By: Donald K. Burleson, Dave Ensor, Christopher Foot, Lisa
Hernandez, Mike Hordila, Jonathan Lewis, Dave Moore, Arup
Nanda, John Weeg

Copyright © 2003 by BMC Software and DBAzine. Used with permission.

Printed in the United States of America.

Series Editor: Donald K. Burleson

Production Manager: John Lavender

Production Editor: Teri Wade

Cover Design: Bryan Hoff

Printing History:

August, 2003 for First Edition

Oracle, Oracle7, Oracle8, Oracle8i and Oracle9i are trademarks of Oracle Corporation.

Many of the designations used by computer vendors to distinguish their products are
claimed as Trademarks. All names known to Rampant TechPress to be trademark names
appear in this text as initial caps.

The information provided by the authors of this work is believed to be accurate and
reliable, but because of the possibility of human error by our authors and staff, BMC
Software, DBAZine and Rampant TechPress cannot guarantee the accuracy or
completeness of any information included in this work and is not responsible for any
errors, omissions or inaccurate results obtained from the use of information or scripts in
this work.

Links to external sites are subject to change; dbazine.com, BMC Software and Rampant
TechPress do not control or endorse the content of these external web sites, and are not
responsible for their content.

ISBN: 0-9744355-0-3

iii

Table of Contents

Conventions Used in this Book .. xiv
About the Authors .. xvi
Foreword..xix

Section One - Datafiles

Chapter 1 - Measuring Oracle Segment I/O 1
What is Really Going On? by John Weeg......................................1
Theory ...1
Test It ..2
What Happens When We Update?...4
What Else? ..5
So What? ...5

Chapter 2 - Datafile Resizing Tips ..6
Setting Free Your Space by John Weeg ...6
Alter Database..7
Double Checking the Work ...9

Chapter 3 - Reducing Disk I/O on Oracle Datafiles........... 12
Oracle Expert Tuning Secrets to reduce disk I/O by Don
Burleson ... 12
Oracle tuning and Disk I/O ... 12
Tuning with RAM Data Buffers... 13
The KEEP Pool.. 13
Locating Tables and Indexes for the KEEP Pool..................... 14
The RECYCLE Pool ... 16
Using Multiple Block Sizes.. 16
Disk I/O Tuning .. 19
STATSPACK Reports for Oracle Datafiles............................... 20
Conclusion ... 22

Chapter 4 - Measuring Data Segment Statistics 24

iv Oracle Space Management Handbook

Digging at the Segment Level : Performance Diagnosis Reaches
A Deeper Level by Arup Nanda .. 24
Background / Overview.. 25
Setting the Statistics Levels ... 26
Segment Level Statistics Collection ... 28

Column Explanation ... 29
Examining Detailed Statistics ... 30
Improvements ... 30
Case Study.. 31
Solution .. 34
Conclusion ... 35

Chapter 5 - Optimizing Oracle Physical Design 37
Optimal Physical Database Design for Oracle8i by Dave
Ensor .. 37
Introduction... 37
Physical Database Design 101 .. 37
What is Physical Database Design? ... 38
Database Block Structure .. 39
Block Size... 40
Unstructured Data.. 41
Freelists .. 41
Extents.. 42
AutoExtension .. 43
Partitioning .. 44
Index Compression .. 46
Index Organized Tables (IOT's) .. 47
Insert Times... 48
Retrieval Times ... 50
Application Impact... 50
Online Table Reorganization.. 51
Temporary Tables... 52
Application Impact... 54
Locally Managed Tablespaces... 55

Table of Contents v

Transportable Tablespaces.. 56
Conclusions ... 58

Chapter 6 - Verifying Segment Backup Scripts 60
Did the Backup Work? by John Weeg .. 60
Problem.. 60
How Do We Know? .. 61
Parsing This String ... 61
Bring It In .. 62
Use It .. 64
Use it Elsewhere ... 65

Chapter 7 - Data Segment Update Internals 66
How Much Does an Update Cost? by Jonathan Lewis 66
A Brief History of Screen Generators... 66
What Does It Cost to Update a Column? 67
But There's More .. 69
Triggers... 70
Indexes ... 71
Referential Integrity.. 72
There's Always a Trade-off ... 73
Conclusion ... 74

Chapter 8 - Segment Transaction Slot Internals.................. 75
Interested Transaction List (ITL) Waits Demystified by Arup
Nanda ... 75

What is ITL? .. 75
What Is an ITL Wait .. 76
Simulation .. 79
How to Reduce ITL Waits .. 80
How to Diagnose the ITL Wait ... 81
What INITRANS Value is Optimal .. 83
Automatic Block Management in Oracle9i 85
Conclusion ... 86

vi Oracle Space Management Handbook
Section Two - Tablespaces

Chapter 9 - Automated Space Cleanup in Oracle 87
Automated Space Cleanup in Oracle by Mike Hordila 87
Stray Temporary Segments ... 87
Manual Cleanup of Temporary Segments 90

Recommendations Regarding Temporary Segments........................... 92
Locking .. 93

Problems with Rollback Segments... 93
Recommendations Regarding Rollback Segments 93

Automated Space Cleanup .. 94
Prerequisites.. 94
Overview of the Package.. 94

Setup ... 96
Chapter 10 - Using Oracle TEMP Files............................... 98

Temporarily Yours: Tempfiles by John Weeg 98
Don't Wait to Create .. 98
Don't Backup .. 99
Don't Recover ... 99
Don't Copy for Standby .. 100
Don't Add Overhead ... 100
Give It a Try .. 101

Chapter 11 - Monitoring TEMP Space Usage 102
Who Took All the TEMP? by John Weeg 102
Where Are My TEMP Tablespaces? ... 102
Show Me the Objects... 103
Who Are the Users? ... 103
A Happy Ending... 105

Chapter 12 - Oracle9i Self-Management Features 106
Oracle9i Self-Management Features: The Early Winners by
Dave Ensor.. 106
Introduction... 106
Test Environment .. 107
Self-Management .. 108

Table of Contents vii

Goals.. 108
Examples ... 109

Instance Parameter Management ... 110
Self-Tuning Memory Management .. 112
Memory Made Simple .. 112
PGA Aggregate Target .. 113
Cache Advice... 115
Automatic Undo Management ... 117

Background .. 117
Rollback Segments.. 118
The Oracle9i Solution .. 119
Database Resource Manager... 120
Unused Index Identification ... 121
Oracle Managed Files... 123
Conclusions ... 125

Chapter 13 - Internals of Locally-Managed Tablespaces .. 126
Locally Managed Tablespaces by Jonathan Lewis 126
Tablespaces Past and Present ... 126
The Past.. 127
The Present.. 128
Where Are the Benefits?.. 131
Conclusion ... 138

Chapter 14 - Multiple Block Sizes in Oracle9i 139
Using Multiple Block Sizes in Oracle9i by Don Burleson 139
Indexes and Large Data Blocks.. 144
Allocating Objects into Multiple Block Buffers 144
Tools for Viewing Data Buffer Usage....................................... 147
Creating Separate Data Buffers .. 148
Conclusion ... 149

Section Three - Tables

Chapter 15 - Automated Table Reorganization in Oracle8i150

viii Oracle Space Management Handbook

Automated Table/Index Reorganization In Oracle8i by Mike
Hordila ... 150
When Reorganizing, How Many Extents to Use?................... 151
Possible Reorganizing Strategies .. 151
Assumptions and Experimental Figures 152
Some Procedures Related to Table Reorganization 152
Important Issues Regarding Table/Index Moving/Rebuilding
... 153
The Behavior of the "Alter Table/Index Move/Rebuild"
Commands... 155
Limitations of the "ALTER TABLE MOVE" Command:.... 155
Manual Object Reorganization... 156

Step 1... 157
Step 2... 157

Automated Object Reorganization .. 159
Prerequisites.. 160
Associated Tables ... 160

Overview of the Package... 161
Setup ... 164

Chapter 16 - Using External Table in Oracle9i.................. 165
External Tables in Oracle9i by Dave Moore............................ 165
Example ... 166
Limitations ... 170
Performance .. 171
Practical Applications... 173
Database Administration... 174

Chapter 17 - Instructors Guide to External Tables............ 176
An Oracle Instructor's Guide to Oracle9i - External Tables by
Christopher Foot .. 176
External Tables ... 176
Tablespace Changes ... 180
Online Table Reorganizations .. 185

Table of Contents ix
Index Monitoring.. 188

Section Four - Indexes

Chapter 18 - Using Locally-Managed Indexes191
Locally Managed Indexes by John Weeg 191
Rebuild in the same Tablespace ... 191
No Fragment ... 192
8.1 to the Rescue... 193
More Than One .. 193
What Goes Where .. 194
Break Points .. 194
Script... 195
Conclusion ... 195

Chapter 19 - Sizing Oracle Index Segments – Part 1 197
How Big Should This Index Be? by John Weeg...................... 197
B-tree Theory .. 197
Estimate Leafs... 198
Estimate Branches .. 199
Making the Index.. 200

Chapter 20 - Sizing Oracle Index Segments – Part 2......... 201
Is This Index the Right Size? by John Weeg 201
Validate Structure ... 201
Dba_Indexes ... 201
Logical Steps for Resizing and Defragging............................... 203
All Together Now... 206

Section Five - Partitioning

Chapter 21 - Oracle Partitioning Design............................ 208
Partitioning in Oracle 9i, Release 2 by Lisa Hernandez.......... 208
Introduction... 208
Background.. 209
Partitioning Defined... 209
When To Partition.. 210
Different Methods of Partitioning... 211

x Oracle Space Management Handbook

Partitioning Of Tables ... 212
Range Partitioning.. 212
Hash Partitioning... 213
List Partitioning ... 214
Composite Range-Hash Partitioning ... 214
Composite Range-List Partitioning ... 215

Conclusion ... 216
Chapter 22 - Oracle Partitioning Design – Part 2 217

Partitioning in Oracle 9i, Release 2 -- Part 2 by Lisa Hernandez
... 217
Introduction... 217
Background.. 217
Globally Partitioned Indexes .. 218
Locally Partitioned Indexes... 221
When to Use Which Partitioning Method................................ 225
Real Life Example .. 225
Conclusion ... 226

Chapter 23 - Effective Segment Partitioning – Part 1 227
Perils and Pitfalls in Partitioning — Part 1 by Arup Nanda.. 227
Plan Table Revisited... 227
The New Tool DBMS_XPLAN.. 228
Partition Pruning or Elimination ... 231
Partition-wise Joins... 235
Character Value in Range Partitioning 240

Chapter 24 - Effective Segment Partitioning – Part 2........ 243
Perils and Pitfalls in Partitioning — Part 2 by Arup Nanda.. 243
Multi-Column Partition Keys ... 243
Subpartition Statistics... 248

PARTNAME ... 248
GRANULARITY.. 248

Rule Based Optimizer .. 252
Coalesce vs. Merge ... 252

Table of Contents xi

Other Questions ... 254
What about Rebuild Partition and Global Indexes? 254
While using partitioning, should you use bind variables? 254
How many partitions can be defined on a table? 255

Section Six - Replication

Chapter 25 - Multi-Master Replication 256
A Four-phase Approach to Procedural Multi-master
Replication by Don Burleson ... 256
Introduction... 256
Why Consider Oracle Multi-master Replication? 257
Oracle Multi-master Replication .. 258
Multi-master Conflicts and Resolutions.................................... 258

Conflict Types... 259
Conflict Resolution Mechanisms .. 260

Implementing Procedural Multi-master Replication............... 261
Phase I: Pre-configuration Steps for Multi-master Replication........ 262
Phase II: Set-up REPADMIN User and Database Links......... 263
Phase III: Create the Master Database and Refresh Groups 264
Phase IV: Monitoring Multi-master Replication 265

Resources for Defining Multi-master Replication................... 267
Conclusion ... 268
References.. 268

Chapter 26 - Replication Management.............................. 270
Automated Replication Management by Mike Hordila 270
Basic Replication... 270
Automated Replication Management .. 272

Prerequisites.. 272
Associated Tables ... 273
Overview of the Package.. 273
Setup .. 275

Test Environment .. 277
Chapter 27 - Replication Master Table.............................. 279

xii Oracle Space Management Handbook

Altering the Master Table in a Snapshot Replication
Environment without Recreating the Snapshot by Arup Nanda
... 279
Background.. 280
The Usual Method.. 281
The Alternative Approach... 283
Detailed Steps.. 283
Conclusion ... 286

Index .. 287

Table of Contents xiii

xiv Oracle Space Management Handbook

Conventions Used in this Book
It is critical for any technical publication to follow rigorous
standards and employ consistent punctuation conventions to
make the text easy to read.

However, this is not an easy task. Within Oracle there are
many types of notation that can confuse a reader. Some Oracle
utilities such as STATSPACK and TKPROF are always spelled
in CAPITAL letters, while Oracle parameters and procedures
have varying naming conventions in the Oracle documentation.
It is also important to remember that many Oracle commands
are case sensitive, and are always left in their original executable
form, and never altered with italics or capitalization.

Hence, all Rampant TechPress books follow these conventions:

Parameters - All Oracle parameters will be lowercase italics.
Exceptions to this rule are parameter arguments that are
commonly capitalized (KEEP pool, TKPROF), these will be
left in ALL CAPS.

Variables – All PL/SQL program variables and arguments will
also remain in lowercase italics (dbms_job, dbms_utility).

Tables & dictionary objects – All data dictionary objects are
referenced in lowercase italics (dba_indexes, v$sql). This
includes all v$ and x$ views (x$kcbcbh, v$parameter) and
dictionary views (dba_tables, user_indexes).

SQL – All SQL is formatted for easy use in the code depot,
and all SQL is displayed in lowercase. The main SQL terms

(select, from, where, group by, order by, having) will always
appear on a separate line.

Programs & Products – All products and programs that are
known to the author are capitalized according to the vendor
specifications (IBM, DBXray, etc). All names known by
Rampant TechPress to be trademark names appear in this
text as initial caps. References to UNIX are always made in
uppercase.

Conventions Used in this Book xv

xvi Oracle Space Management Handbook

About the Authors
Donald K. Burleson is one of the world’s top Oracle Database

experts with more than 20 years of full-time DBA
experience. He specializes in creating database architectures
for very large online databases and he has worked with some
of the world’s most powerful and complex systems. A
former Adjunct Professor, Don Burleson has written 15
books, published more than 100 articles in national
magazines, serves as Editor-in-Chief of Oracle Internals and
edits for Rampant TechPress. Don is a popular lecturer and
teacher and is a frequent speaker at Oracle Openworld and
other international database conferences.

Christopher T. Foot is an Oracle certified senior-level
instructor, technical sales specialist and database architect for
Contemporary Technologies Inc. He has fifteen years'
experience with database Technologies and is a regular
speaker at the International Oracle Users Group and Oracle
Open World conferences Contemporary Technologies Inc.
is a leading provider of Oracle products and services.

Dave Ensor is a Product Developer with BMC Software where
his mission is to produce software solutions that automate
Oracle performance tuning. He has been tuning Oracle for
13 years, and in total he has over 30 years active
programming and design experience.
As an Oracle design and tuning specialist Dave built a global
reputation both for finding cost-effective solutions to Oracle
performance problems and for his ability to explain
performance issues to technical audiences. He is co-author
of the O'Reilly & Associates books Oracle Design and
Oracle8 Design Tips.

Liza Fernandez is an aspiring DBA working toward her Oracle
9i DBA certification. She is also pursuing her Master's
Degree in Information Systems Management.

Mike Hordila is a DBA OCP v.7, 8, 8i, 9i, and has his own
Oracle consulting company, DBActions Inc.,
www.dbactions.com, in Toronto, Ontario. He specializes in
tuning, automation, security, and very large databases. Mike
has articles in Oracle Magazine Online, Oracle Internals and
DBAzine.com. Updated versions of his work are available
on www.hordila.com. He is also a technical editor with
Hungry Minds (formerly IDG Books).

Jonathan Lewis is a freelance consultant with more than 17
years experience in Oracle. He specializes in physical
database design and the strategic use of the Oracle database
engine, is author of Practical Oracle 8i - Building Efficient
Databases published by Addison-Wesley, and is one of the
best-known speakers on the UK Oracle circuit. Further
details of his published papers, tutorials, and seminars can be
found at www.jlcomp.demon.co.uk, which also hosts The Co-
operative Oracle Users' FAQ for the Oracle-related Usenet
newsgroups.

Dave Moore is a product architect at BMC Software in Austin,
TX. He's also a Java and PL/SQL developer and Oracle
DBA.

Arup Nanda is the founder and President of Proligence, a
specialized Oracle database services provider in the New
York metropolitan area, which provides tactical solutions in
all aspects of the an Oracle project life cycle. He has been an
Oracle DBA for more than nine years has touched almost all
types of database performance issues. He specializes in
Oracle performance evaluation and high availability
solutions.

About the Authors xvii

xviii Oracle Space Management Handbook

John Weeg has over 20 years of experience in information
technology, starting as an application developer and
progressing to his current level as an expert Oracle DBA.
His focus for the past three years has been on performance,
reliability, stability, and high availability of Oracle databases.
Prior to this, he spent four years designing and creating data
warehouses in Oracle. John can be reached at
jweeg@hesaonline.com or
http://www.hesaonline.com/dba/dba_services.shtml.

Foreword
As a database management system, the management of Oracle
file structures is critically important to the successful operation
of any system. The Oracle administrator must understand all
levels of Oracle file management, including data file
management principles, tablespace management principles, and
the storage of individual objects within the tablespaces. As
Oracle has evolved into one of the world's most complex
database management systems, it is imperative that all Oracle
professionals understand how their information is stored both
at the logical and physical level. The purpose of this book is to
bring together some of the world's best experts to talk about
storage management internals and to provide you with insights
into the successful operation of large complex Oracle
databases.

This book is designed to provide you with specific insights and
techniques that you can use to immediately be successful within
your Oracle enterprise. Given the amazing wealth of choices
that Oracle offers with regard to data storage mechanisms, it is
important for the Oracle professional to understand which
mechanisms are appropriate, and not appropriate, for their
specific database needs. The focus of this book is going to be
about how you can leverage Oracle's wealth of choices in order
to choose the optimal configuration for your I/O subsystem.

This book will review Space Management in six functional
areas: Data Files, Tablespaces, Tables, Indexes, Partitioning,
and Replication.

In the section on space management as it applies to data files,
this text covers relevant topics such as I/O contention,

Foreword xix

xx Oracle Space Management Handbook

determining which files need resizing and the optimum size to
make them, tuning to reduce disk I/O, using v$segstat and
v$segment_statistics to isolate segment level problems, index
compression and Index Organized Tables (IOT), simplifying
the process of verifying that your backup ran successfully,
Interested Transaction List (ITL) waits, and what to consider
before re-writing SQL statements to try to save CPU costs.

Space management for tablespaces offers a PL/SQL package to
automate database cleanup, a thorough discussion of TEMP
tablespaces, a section on the ability of Oracle's dataserver to
manage itself, strategies for using locally-managed tablespaces,
and a discussion of Oracle's ability to support multiple block
sizes

In the discussion on space management for tables you will read
about automating periodic table and index reorganization, and
the practical application, management, and performance issues
of external tables.

This text also covers how to rebuild indexes without worrying
about fragmentation, and how to size indexes for new and
existing tables. There is a discussion on how to partition tables
and then some of the perils and pitfalls to watch for. The text
wraps up with a discussion on automating replication.

We hope you will be able to apply some of the techniques
offered in this text to your production environment to enhance
the success of your Oracle enterprise.

1Measuring Oracle
Segment I/O

CHAPTER

What is Really Going On?
We are taught, from the beginning, that we want to separate
our tablespaces onto different mount points or drives to
minimize I/O level contention. There are devices that
minimize this physical level contention; but most of my smaller
clients don't have these devices, so we still have this concern.
How do we see what is really at the file level? Given a smaller
system, where I can fit the majority of the database into
memory; does the I/O matter?

Theory
Ideally all the data we want to work with are in memory and no
I/O is needed. In reality, you usually can't count on this being
the case. So, our goal is to try to minimize the disk physical
movement for any given data request. For example, if the index
and the data are on the same disk, there is movement needed
for the index and then the same disk must move for the data. If
the next read wants the next record, then we must move back
for the index and back again for the data. We have made the
read for the data and the read for the index get in each other's
way.

The theory says that all objects that might be used in the same
transaction should be on different mount points. So we have
the following minimum mount points:

What is Really Going On? 1

2 Oracle Space Management Handbook

System tablespace
Data tablespace
Index tablespace
Rollback segments
Archive logs
Temporary tablespace

These six mount points would give us our basic good system
setup. Let's put this theory to the test.

Test It
There are two very useful dynamic system views, v$datafile and
v$tempfile, that will allow us to test this theory. Previous to 8.1
you won't find v$tempfile. These both have the same layout, so I
will just work with v$datafile for the testing. The fields we are
interested in first are the number of physical reads/writes and
the number of blocks read and written.

This view gives the statistics since instance startup so we have
created a table to isolate and compare the results of v$datafile
for the current activity:

create table phy_io tablespace data01
storage (initial 64k next 64k pctincrease 0) pctfree 0 pctused 80
unrecoverable
as select file#,phyrds,phywrts,phyblkrd,phyblkwrt from v$filestat;

So let's see what we have right now in a newly started instance -
the only activity has been to create this table:

SQL> select c.file_name,a.file#,a.phyrds-b.phyrds phyrds,a.phywrts-
b.phywrts phywrts
FILE_NAME (IO) FILE# PHYRDS PHYWRTS PHYBLKRD PHYBLKWRT
---------------- ---------- ---------- ---------- ---------- ----------
SYSTEM01.DBF 1 29 26 47 26
DATA0101.DBF 3 1 1 1 1

The I/O against DATA0101.DBF is me accessing the phy_io
table. If we check memory we can see the current blocks:

SQL> select b.file_name,a.file#,a.cnt from
 2 (select file#,count(1) cnt from v$bh group by file#) a
 3 ,dba_data_files b
 4 where a.file#=b.file_id;

FILE_NAME (IN MEMORY) FILE# CNT
---------------------- ---------- ----------
SYSTEM01.DBF 1 569
RBS01.DBF 2 11
DATA0101.DBF 3 2

Okay, so we see how the system starts. Now, if we access some
data, what happens?

SQL> select dsn,subst_id from iuc4.ds_admin_tab where dsn=523;

 DSN SUBST_ID
---------- -----------
 523 101316-69-2

Checking our I/O now we see there were four physical reads to
get this data in and we have four additional blocks allocated in
memory:

FILE_NAME (IO) FILE# PHYRDS PHYWRTS PHYBLKRD PHYBLKWRT
---------------- ---------- ---------- ---------- ---------- ----------
SYSTEM01.DBF 1 59 52 92 52
DATA0101.DBF 3 5 1 5 1

FILE_NAME (IN MEMORY) FILE# CNT
---------------------- ---------- ----------
SYSTEM01.DBF 1 587
RBS01.DBF 2 11
DATA0101.DBF 3 6

These four new blocks in memory are the data and index:

Test It 3

4 Oracle Space Management Handbook

SQL> select b.owner,b.object_name,a.cnt from
 2 (select objd,count(1) cnt from v$bh group by objd) a
 3 ,dba_objects b
 4 where b.data_object_id = a.objd and b.owner = 'IUC4';

OWNER OBJECT_NAME CNT
--------------- ------------------------- ----------
IUC4 DS_ADMIN_TAB 2
IUC4 DS_ADMIN_IDX1 2

To bring this data in, we performed four separate read actions
and we see that we needed to take two separate objects, table
and index, from the same file so we were contending with
ourselves. We also see that there was additional I/O against the
system tablespace to get the object definition. In addition, there
is I/O going on against the system tablespace for timing, so
you will see that number rise even when there is no activity.

What Happens When We Update?
SQL> update iuc4.ds_admin_tab set subst_id = '101316-69-2' where
dsn=523;

1 row updated.

I also committed!

FILE_NAME (IO) FILE# PHYRDS PHYWRTS PHYBLKRD PHYBLKWRT
---------------- ---------- ---------- ---------- ---------- ----------
SYSTEM01.DBF 1 70 78 118 78
DATA0101.DBF 3 5 1 5 1

FILE_NAME (IN MEMORY) FILE# CNT
---------------------- ---------- ----------
SYSTEM01.DBF 1 591
RBS01.DBF 2 11
DATA0101.DBF 3 6

Nothing happened! We see there is no physical change. I
expected I/O at least to the rollback file. If I rollback instead
of commit, there is still no I/O count change. So we are seeing
that the system really wants to work just in memory whenever
it can.

Now let's force the issue with a checkpoint:

SQL> alter system checkpoint;
System altered.
FILE_NAME (IO) FILE# PHYRDS PHYWRTS PHYBLKRD PHYBLKWRT
---------------- ---------- ---------- ---------- ---------- ----------
SYSTEM01.DBF 1 71 103 119 103
RBS01.DBF 2 1 12 1 12
DATA0101.DBF 3 6 4 6 4

FILE_NAME(IN MEMORY) FILE# CNT
---------------------- ---------- ----------
SYSTEM01.DBF 1 591
RBS01.DBF 2 11
DATA0101.DBF 3 6

Here we see the write contention. We performed a write
against all three files. If they are on the same mount point, then
it happened serially --they wrote single threaded.

What Else?
The v$filestat also will tell us the time spent performing reads
and writes, in hundredths of a second, if timed_statistics is set to
true. When I look at a system that has been up for a longer
time, I see that the average time to write a block of data is
about ten times longer than the average time to read a block.

So What?
Take a look at your v$filestat and v$tempstat views. Mine have
shown me that even though Oracle works in memory as much
as possible, I still need to be very aware of I/O-level
contention. I also see that wherever I can, I will try to minimize
the number of write actions performed.

Watch yours for a while to see what is really going on.

What Else? 5

6 Oracle Space Management Handbook

Datafile Resizing Tips CHAPTER

2
Setting Free Your Space

Conventional database wisdom dictates that we should treat
disk space as though it were free, unfettered space waiting to be
filled with data. It's a liberating idea, but not entirely practical.
Not surprisingly, it's also rife with potential problems. Get too
comfortable with the idea of space being "free" and you may
suddenly find yourself scrounging around for it.

When setting up a database, for example, a database
administrator usually takes educated guesses at the company's
space needs, large or small. It's important to point out,
however, that those guesses tend to be conservative. The
reason? By overestimating the amount of space needed, the
administrator is less likely to wind up stuck when he or she first
loads all the data. Once the instance runs for a while, it's
possible to see just how far off the original estimate of space
requirements was. Moreover, the administrator can give back
some of that space.

Over-allocation of space at the file level affects the
backup/recovery window, file checking times and, most
painfully, limits the potential allocation of space to a tablespace
that needs the extra room. A simpler solution would be to
review the evolution of the script, which lets the administrator
know which files can and cannot be resized to create more
space.

Alter Database
It's possible to release space from data files but only down to
the first block of data. This is done with the 'alter database'
command. Rather than go through the tedious process of
manually figuring out the command every time it's used, it
makes more sense to write a script that will generate this
command as needed.

The basic syntax for this command is:

Alter database name datafile 'file_name' resize size;

Where name is the name of the database, file_name is the name
of the file and size is the new size to make this file. We can see
this size change in the dba_data_files table as well as from the
server.

First, pull in the database name:

Select 'alter database '||a.name
From v$database a;

Once that has been done, it's time to add in data files:

select 'alter database '||a.name||' datafile '''||b.file_name||''''
from v$database a
,dba_data_files b;

While this is closer to the ultimate solution, it's not quite there
yet. The question remains: Which data files do you want to
alter? At this point, you can use a generally accepted standard,
which allows tablespaces to be 70 percent to 90 percent full. If
a tablespace is below the 70 percent mark, one way to bring the
number up is to de-allocate some of the space.

Alter Database 7

8 Oracle Space Management Handbook

So how do you achieve percent full? While there are a number
of different ways, simple is usually ideal. Here's how it works.

Amount used:

Select tablespace_name,sum(bytes) bytes_full
From dba_extents
Group by tablespace_name;

Total available:

Select tablespace_name,sum(bytes) bytes_total
From dba_data_files
Group by tablespace_name;

So if we add this with our original statement, we can select on
pct_used (less than 70 percent):

select 'alter database '||a.name||' datafile '''||b.file_name||''''
from v$database a
,dba_data_files b
,(Select tablespace_name,sum(bytes) bytes_full
From dba_extents
Group by tablespace_name) c
,(Select tablespace_name,sum(bytes) bytes_total
From dba_data_files
Group by tablespace_name) d
Where b.tablespace_name = c.tablespace_name
And b.tablespace_name = d.tablespace_name
And bytes_full/bytes_total < .7
;

According to the command, a selection has been made based
on tablespace. What if you want to resize based on file? It's
crucial to remember that multiple files can exist in any
tablespace. Plus, only space that is after the last data block can
be de-allocated. So the next step should be to find the last data
block:

select tablespace_name,file_id,max(block_id) max_data_block_id
from dba_extents
group by tablespace_name,file_id;

Now that the command to find the last data block has been
inserted, it is time to find the free space in each file above that
last data block:

Select a.tablespace_name,a.file_id,b.bytes bytes_free
From (select tablespace_name,file_id,max(block_id) max_data_block_id
from dba_extents
group by tablespace_name,file_id) a
,dba_free_space b
where a.tablespace_name = b.tablespace_name
and a.file_id = b.file_id
and b.block_id > a.max_data_block_id;

So far, so good. How is it possible, then, to combine
commands to ensure the correct amount will be resized? In
fact, it's fairly easy.

select 'alter database '||a.name||' datafile '''||b.file_name||'''' ||
' resize '||(bytes_total-bytes_free)
from v$database a
,dba_data_files b
,(Select tablespace_name,sum(bytes) bytes_full
From dba_extents
Group by tablespace_name) c
,(Select tablespace_name,sum(bytes) bytes_total
From dba_data_files
Group by tablespace_name) d
,(Select a.tablespace_name,a.file_id,b.bytes bytes_free
From (select tablespace_name,file_id
,max(block_id) max_data_block_id
from dba_extents
group by tablespace_name,file_id) a
,dba_free_space b
where a.tablespace_name = b.tablespace_name
and a.file_id = b.file_id
and b.block_id > a.max_data_block_id) e
Where b.tablespace_name = c.tablespace_name
And b.tablespace_name = d.tablespace_name

Double Checking the Work
Now, the thing to do is ensure that the right amount of space -
not too much, not too little - has been de-allocated. The rule of
thumb to follow: Do not go above 70 percent of the tablespace

Double Checking the Work 9

10 Oracle Space Management Handbook

being used. If you have already pulled out how much is used
from dba_extents, you can simply add a check to your statement:

select 'alter database '||a.name||' datafile '''||b.file_name||'''' ||
' resize '||greatest(trunc(bytes_full/.7)
,(bytes_total-bytes_free))
from v$database a
,dba_data_files b
,(Select tablespace_name,sum(bytes) bytes_full
From dba_extents
Group by tablespace_name) c
,(Select tablespace_name,sum(bytes) bytes_total
From dba_data_files
Group by tablespace_name) d
,(Select a.tablespace_name,a.file_id,b.bytes bytes_free
From (select tablespace_name,file_id
,max(block_id) max_data_block_id
from dba_extents
group by tablespace_name,file_id) a
,dba_free_space b
where a.tablespace_name = b.tablespace_name
and a.file_id = b.file_id
and b.block_id > a.max_data_block_id) e
Where b.tablespace_name = c.tablespace_name
And b.tablespace_name = d.tablespace_name
And bytes_full/bytes_total < .7
And b.tablespace_name = e.tablespace_name
And b.file_id = e.file_id
;

One last thing to do: Add a statement to indicate what is being
changed.

select 'alter database '||a.name||' datafile '''||b.file_name||'''' ||
' resize '||greatest(trunc(bytes_full/.7)
,(bytes_total-bytes_free))||chr(10)||
'--tablespace was '||trunc(bytes_full*100/bytes_total)||
'% full now '||
trunc(bytes_full*100/greatest(trunc(bytes_full/.7)
,(bytes_total-bytes_free)))||'%'
from v$database a
,dba_data_files b
,(Select tablespace_name,sum(bytes) bytes_full
From dba_extents
Group by tablespace_name) c
,(Select tablespace_name,sum(bytes) bytes_total
From dba_data_files
Group by tablespace_name) d
,(Select a.tablespace_name,a.file_id,b.bytes bytes_free
From (select tablespace_name,file_id
,max(block_id) max_data_block_id
from dba_extents

group by tablespace_name,file_id) a
,dba_free_space b
where a.tablespace_name = b.tablespace_name
and a.file_id = b.file_id
and b.block_id > a.max_data_block_id) e
Where b.tablespace_name = c.tablespace_name
And b.tablespace_name = d.tablespace_name
And bytes_full/bytes_total < .7
And b.tablespace_name = e.tablespace_name
And b.file_id = e.file_id
;

At last, here's a script that will create the script. Even so, it's
important to pay careful attention when applying the created
script. Why? Because Rollback, System and Temporary
tablespaces are vastly different creatures, and each should not
necessarily be held to the 70 percent rule. By the same token,
there might be a very good reason for a tablespace to be over
allocated -- like the giant load that will triple the volume
tonight.

A word of caution, too: Be sure that extents can still be
allocated in each tablespace. There may be enough free space,
but it may be too fragmented to be useful. That problem will
be the focus of another article.

Double Checking the Work 11

12 Oracle Space Management Handbook

Reducing Disk I/O on
Oracle Datafiles

CHAPTER

3
Oracle Expert Tuning Secrets to reduce disk I/O

In this installment, we will examine disk I/O and understand
how reducing disk I/O s the single most important Oracle
tuning activity.

Oracle tuning and Disk I/O
Disk I/O is a very time-consuming task, and almost every
Oracle tuning activity has the ultimate goal of reducing disk
I/O.

When we look at Oracle9i tuning, we see that almost every
tuning activity is done with the ultimate goal of reducing disk
I/O. To make this clear, let's look at some common tuning
activities and see how they reduce disk I/O:

Tuning SQL statements - When we tune an SQL statement to
replace a full-table scan with an index range scan, the
performance improvement is the direct result of a reduction
in disk I/O.

Changes to the Oracle SGA - When we increase the shared_pool,
large_pool, or db_cache_size, the resulting performance
improvement is related to the reduction in disk I/O.

Table reorganizations - When we reorganize a table, we
remove extent fragments, coalesce chained rows, re-build the

freelist chain, and re-sequence table rows. These activities all
have the result of reducing the amount of disk I/O in the
Oracle database.

In sum, Disk I/O is the single most expensive operation within
an Oracle9i database, and multiple block sizes give us a
powerful new tool to manage disk I/O with more power than
ever before.

Let's see how using Oracle RAM data buffers help to reduce
disk I/O.

Tuning with RAM Data Buffers
In Oracle9i we have the ability to define up to seven separate
and distinct data buffers. These data buffers can be used to
isolate Oracle data in RAM and improve performance by
reducing disk I/O.

These buffers can have different block sizes and named pools
exist for 2K, 4K, 16K and 32K buffers and we also have three
other pools, the default pool, the recycle pool and the keep
pool.

Let's take a look at each of these data buffers.

The KEEP Pool
When the KEEP was first introduced in Oracle8i, its purpose
was to provide a RAM data buffer to fully-cache blocks
frequently referenced tables and indexes. For example, when
computing the size of the KEEP pool, we must total the
number of bytes for all tables that have been marked to reside
in the KEEP pool. This is because we always want the KEEP

Tuning with RAM Data Buffers 13

14 Oracle Space Management Handbook

pool to fully cache all tables that have been assigned to the
KEEP pool.

In Oracle9i, a table must reside in a tablespace of the same
block size as the cache assigned to the table.

alter table CUSTOMER storage (buffer_pool KEEP);

Remember, the point of the KEEP pool is to always have a
data buffer hit ratio of 100%. Also note that the block size of
the KEEP pool is not important. This is because, once loaded,
all blocks in the KEEP pool will always remain in RAM
memory. In our example, the KEEP poll is a 32K blocksize
because we wanted the RECYCLE pool to have a large block
size to improve the performance of full-table scans.

Locating Tables and Indexes for the KEEP Pool
The Oracle documentation states "A good candidate for a
segment to put into the KEEP pool is a segment that is smaller
than 10% of the size of the DEFAULT buffer pool and has
incurred at least 1% of the total I/Os in the system." In other
words, small, highly accessed tables are good candidates for
caching.

So, how do we identify small-table full table scans? The best
method is to explain all of the SQL that is currently in your
library cache and then generate a report showing all of the full
table scans in your database at that time. I invented a very
important script called access.sql that was published in the
December 2000 issues of Oracle magazine. Here is the link:

http://www.oracle.com/oramag/oracle/00-nov/index.html?o60dba.html

Running the access.sql script should give us all of the
information we need to identify tables for the KEEP pool. Any
small tables (for example, less than 50 blocks) that have a high
number of full table scans will benefit from being added to the
KEEP pool. In the report below, we see output from an Oracle
Applications database, and we see full table scans on both large
and small tables.

 full table scans and counts

full table scans and counts

OWNER NAME NUM_ROWS C K BLOCKS NBR_FTS
---------- ------------------------ ------------ - - -------- --------
APPLSYS FND_CONC_RELEASE_DISJS 39 N K 2 98,864
APPLSYS FND_CONC_RELEASE_PERIODS 39 N K 2 98,864
APPLSYS FND_CONC_RELEASE_STATES 1 N K 2 98,864
SYS DUAL N K 2 63,466
APPLSYS FND_CONC_PP_ACTIONS 7,021 N 1,262 52,036
APPLSYS FND_CONC_REL_CONJ_MEMBER 0 N K 22 50,174
APPLSYS FND_CONC_REL_DISJ_MEMBER 39 N K 2 50,174
APPLSYS FND_FILE_TEMP 0 N 22 48,611
APPLSYS FND_RUN_REQUESTS 99 N 32 48,606
INV MTL_PARAMETERS 6 N K 6 21,478
APPLSYS FND_PRODUCT_GROUPS 1 N 2 12,555
APPLSYS FND_CONCURRENT_QUEUES_TL 13 N K 10 12,257
AP AP_SYSTEM_PARAMETERS_ALL 1 N K 6 4,521
APPLSYS FND_CONCURRENT_QUEUES 13 N K 10 4,078

From examining the above report, we identify the following
files for addition to the KEEP pool. We select those tables
with less than 50 blocks that are not already in the KEEP pool
(the "K" column).

OWNER NAME NUM_ROWS C K BLOCKS
NBR_FTS
-------------- ------------------------ ---- -------- - - -------- ----

PPLSYS FND_FILE_TEMP 10 N 22
48,611
APPLSYS FND_RUN_REQUESTS 99 N 32
48,606
APPLSYS FND_PRODUCT_GROUPS 1 N 2
12,555

Locating Tables and Indexes for the KEEP Pool 15

Remember, our goal is for the data buffer hit ratio for the
KEEP pool to always be 100 percent. Every time we add a

16 Oracle Space Management Handbook

table to the KEEP pool, we must also add the number of
blocks in the table to the KEEP pool parameter in our init.ora
file.

Once you have explained all of the SQL in your library cache,
you will have a plan table with all of the execution plans and an
sqltemp table with all of the SQL source code. Once these tables
are populated, you can run a script to generate the KEEP
syntax for you. Let's take a look at this script:

The RECYCLE Pool
This data pool is reserved for large-table full table scans.
Because Oracle data blocks from full table scans are unlikely to
be reread, the RECYCLE pool is used so that the incoming
data blocks do not "flush out" data blocks from more
frequently used tables and indexes. Large tables that experience
full-table scans are assigned to the RECYCLE pool to prevent
their data blocks from reducing available blocks for other
tables.

Now let's see how multiple block sizes can improve Oracle
performance.

Using Multiple Block Sizes
The most important consideration when using multiple block
sizes in Oracle9i is to segregate different portions of the Oracle
database into different data pools.

When an SQL statement requests the fetch of a result set from
Oracle tables, the SQL is probably retrieving the table by an
index.

As an Oracle8i tuning expert, I often recommended that a
whole database be re-defined with a large blocksize. Many
people were mystified when a database with a 2K-block size
was increased to an 8K-block size and the entire database ran
faster. A common justification for resisting a block size
increase was "This database randomly fetches small rows. I
can't see why moving to a larger block size would improve
performance." So, then, what explains the performance
improvement with larger block sizes?

When choosing a block size, many DBAs forget about the
index trees and how Oracle indexes are accessed sequentially
when doing an index range scan. An index range scan is
commonly seen in nested loop joins, and the vast majority of
row access involved indexes.

Because index range scans involve gathering sequential index
nodes, placing the indexes in a larger block size reduces disk
I/O and improves throughput for the whole database.

So then, why not create our entire Oracle database with large
block sizes and forget about multiple block sizes? The answer is
not simple. In order to fully utilize the RAM memory in the
data buffers, you must segregate tables according to their
distribution of related data.

Small blocks - Tables with small rows that are accessed in a
random fashion should be placed onto tablespaces with
small block sizes. With random access and small block sizes,
more of the RAM in the data buffer remains available to
hold frequently referenced rows from other tables.

Large blocks - Row-ordered tables, single-table clusters, and
table with frequent full-table scans should reside in

Using Multiple Block Sizes 17

18 Oracle Space Management Handbook

tablespaces with large block sizes. This is because a single
I/O will fetch many related rows and subsequent requests
for the "next" rows will already be in the data buffer.

The goal here is simple; we want to maximize the amount of
available RAM memory for the data buffers by setting the
block sizes according to the amount of I/O experienced by the
table or index. Random access of small rows suggests small
block sizes, while sequential access of related rows suggests
large block sizes.

Here is a sample of an Oracle init.ora file that uses separate data
buffers with different block sizes:

db_block_size=32768 -- This is the system-wide
 -- default block size

db_cache_size=3G -- This allocates a total of 3 gigabytes
 -- for all of the 32K data buffers

db_keep_cache_size=1G -- Here we use 1 gigabyte for the KEEP pool

db_recycle_cache_size=500M -- Here is 500 meg for the RECYCLE pool
 -- Hence, the DEFAULT pool is 1,500 meg

-- ***
-- The caches below are all additional RAM memory (total=3.1 gig)
-- that are above and beyond the allocation from db_cache_size
-- ***

db_2k_cache_size=200M -- This cache is reserved for random
 -- block retrieval on tables that
 -- have small rows.

db_4k_cache_size=500M -- This 4K buffer will be reserved
 -- exclusively for the data dictionary.
 -- Only the SYSTEM tablespace has 4K blocks

db_8k_cache_size=800M -- This is a separate cache for
 -- segregating I/O for specific tables

db_16k_cache_size=1600M -- This is a separate cache for
 -- segregating I/O for specific tables

Next let's move deeper and explore techniques for identifying
hot data files within Oracle. By knowing those data files that

have lot's of I/O, we gain insight toward our goal of reducing
I/O.

Disk I/O Tuning
For other operating environments, we are concerned whenever
we see a backlog of I/O tasks waiting to access data on a single
disk. For other operating systems, the iostat utility can be used
to detect I/O issues.

Once you've identified the hot disks, look closely to find out
which files and tables on the disks experience most of the
activity, so that you can move them to less-active disks as
needed. The actual process of identifying hot files and disks
involves running data collection utilities, such as STATSPACK
and the UNIX iostat utility, and then using the collected I/O
data to pinpoint the sources of excessive I/O measurements.

Here are the cardinal rules for disk I/O:

Understand I/O - There is a difference between a busy disk and
a disk that is waiting for I/O to complete. In the next
section we will explore the UNIX iostat utility and show how
you can identify busy disks.

Monitor disk I/O - Many disk arrays such as EMC provide
sophisticated disk monitoring tools such as Open
Symmetrics Manager and Navistar. These tools report on
more than simple disk waits, and highlight contention for
disks, channels, and disk adapters.

Use RAID properly - If you are using RAID such as RAID 0+1,
the Oracle data blocks will be spread randomly across all of
the disks, and load will rise and fall in a uniform fashion.

Disk I/O Tuning 19

20 Oracle Space Management Handbook

Control where disk I/O happens - Senior Oracle DBAs often
prefer not to implement RAID striping so that they have
more control over the disk I/O subsystem.

Now that we understand the basic principles behind locating
hot disks, let's see how STATSPACK can be extended to
capture file I/O information.

STATSPACK Reports for Oracle Datafiles
To perform I/O load balancing, we need to get information
about the amount of I/O for an Oracle datafile, relative to the
total I/O from the database. Remember, a hot file is not
necessarily causing a disk bottleneck. The goal of the
STATSPACK technique below is to alert the Oracle DBA to
those datafiles that are taking a disproportionate amount of
I/O relative to other files in the database.

The script we use for this purpose is called rpt_hot_files.sql, and
this script is also incorporated into our generalized DBA alert
script, statspack_alert.sql.

The rpt_hot_files.sql script is listed below.

To get the data we need, we rely on two STATSPACK tables:
stats$sysstat The stats$sysstat table contains two important

metrics. These are used to compute the total read I/O and
write I/O for the entire database:

Total physical reads (statistic#=40)
Total physical writes (statistic#=44)

stats$filestatxs The stats$filestatxs table contains detailed read
I/O and write I/O, totaled by datafile name.

We then compare the system-wide total for read and write I/O
with the individual I/O for each Oracle datafile. This allows us
to quickly generate an alert report to tell us which files are
having the most I/O activity. If we were judicious in placing
important tables and indexes into separate tablespaces and
datafiles, this report will tell us exactly which database objects
are the most active.

Note that you can adjust the thresholds for the rpt_hot_files.sql
script. You can set the threshold to 25 percent, 50 percent, or
75 percent, reporting on any files that exceed this threshold
percentage of total read and write I/O.

This is a very important script and appears in the generic
statspack_alert.sql script. It is critical that the DBA become aware
whenever an Oracle datafile is consuming a disproportionate
amount of disk I/O. The script below is somewhat complex,
but it is worth your time to carefully examine it to understand
the query. Lets examine the main steps of this SQL statement:

We select the individual I/O from stats$filestatxs and compare
the value for each file to the total I/O as reported in
stats$sysstat.

The WHERE clause determines when a file will be reported.
You have the option of adjusting the reporting threshold by
commenting out one of the three choices — 25 percent, 50
percent, or 75 percent — of the total I/O.

STATSPACK Reports for Oracle Datafiles 21

22 Oracle Space Management Handbook

Rpt_hot_files.sql

It is highly recommended that the DBA run this STATSPACK
report daily so the DBA can constantly monitor for hot datafiles.
Below is a sample of the output from this script. Note how it
identifies hot files on an hourly basis.

This will identify any single file who's read I/O
is more than 50% of the total read I/O of the database.

Yr. Mo Dy Hr. FILE_NAME READS PCT_OF_TOT
---------------- ----------------------------------- ----------- ------

2000-12-14 14 /u02/oradata/prodb1/bookd01.dbf 354 62
2000-12-14 15 /u02/oradata/prodb1/bookd01.dbf 123 63
2000-12-14 16 /u02/oradata/prodb1/bookd01.dbf 132 66
2000-12-14 20 /u02/oradata/prodb1/bookd01.dbf 124 65
2000-12-15 15 /u02/oradata/prodb1/bookd01.dbf 126 72
2001-01-05 09 /u02/oradata/prodb1/system01.dbf 180 63
2001-01-06 14 /u03/oradata/prodb1/perfstat.dbf 752 100
2001-01-06 15 /u02/oradata/prodb1/bookd01.dbf 968 69

This will identify any single file who's write I/O
is more than 50% of the total write I/O of the database.

Yr. Mo Dy Hr. FILE_NAME WRITES PCT_OF_TOT
---------------- ----------------------------------- ---------- -------

2000-12-18 21 /u02/oradata/prodb1/bookd01.dbf 2654 58
2000-12-29 15 /u02/oradata/prodb1/bookd01.dbf 1095 49

When we know those data files that consume a disproportional
amount of I/O, we can tune the I/O by moving the data files
to other disks.

Conclusion
As we have noted, tuning disk I/O is the dingle most
important Oracle tuning activity, and the vast majority of all

Oracle tuning has the goal of reducing the amount of disk
access. Configuration of the data buffer pools and optimal file
placement also make a huge difference in Oracle performance,
and this paper demonstrates several important tools and
techniques for reducing expensive disk access.

Conclusion 23

24 Oracle Space Management Handbook

Measuring Data
Segment Statistics

CHAPTER

4
Digging at the Segment Level : Performance
Diagnosis Reaches A Deeper Level

Oracle 9i Release 2 provides a very useful way to find out
performance metrics at the segment level, hitherto impossible,
enabling DBAs to pin point problems to a specific segment.
Toolbox: Oracle 9i Release 2 RDBMS. No special tools needed.
User Expertise Required: Advanced DBA Skills.

The biggest problem faced by any Database Administrator
(DBA) trying to diagnose a problem is the lack of system
statistics at a very granular level. STATSPACK report gives a
very detailed performance metrics profile but that is at the
system level only. Although that provides enough information
on the overall health of the system, it does not provide the
DBA with the information on specific objects that experienced
or contributed to the problem, especially in areas where the
problems are storage- and data access-related. For example, a
typical performance problem is caused by heavy buffer access
activity that might be the result of a lopsided index or just plain
data distribution in a table, producing a wait event called
"buffer busy waits." The STATSPACK report or a peek into
the v$sysstat view alerts the DBA that such an event occurred,
but it does not indicate the specific object on which that event
occurred, leaving the analysis in limbo. If that event occurs
when the analysis is going on, then the exact segment can be

ascertained from the P1 and P2 parameters of v$session_wait
view. However, as it usually happens, the suffering sessions are
either completed or blown out to conserve resources, and, thus,
the evidence disappears along with them.

Oracle 9i Release 2 provides a set of very useful performance
views that allow drilling down to the segment level, not just
system level, even after the event has occurred. For instance
when you see a lot of buffer busy wait events in a
STATSPACK report, you can then drill down further to find
out which segments contributed to this wait event. This
enhances the problem solving process immensely as the
segments can be identified without real-time monitoring and
can then be tuned further.

This article will explore such instrumentation and will present
to the reader — specifically the DBA troubleshooting the
performance problem — the means necessary to find out the
wait events on the specific segments.

Background / Overview
First, I will illustrate the methodology with a case study in
tuning. I will start with basic tuning methodology in practice
today using STATSPACK report and then accentuate the
findings from the data collected from the new views. A typical
STATSPACK report has the following lines:

 Avg
 Total Wait wait Waits
Event Waits Timeouts Time (s) (ms) /txn
. . . .
buffer busy waits 3400 0 30 8.8 11.2
. . . .

Background / Overview 25

26 Oracle Space Management Handbook

It shows that the buffer busy waits event occurred 3400 times.
In order to tune the buffer busy waits, we could do a lot of
things — we could increase the freelist groups and freelists of
the segment, or we could rearrange the distribution of the rows
in the table in such a way that the blocks are not repeatedly
picked up at the same time from two different session.
However, to do either of these, it's necessary to know the exact
segment that to be tuned. The STATSPACK report does not
tell us which objects contributed to the buffer busy waits event,
and without the segment level information, the tuning cannot
possibly continue. Traditionally, we would place event 10046
for each of the sessions and see all the wait events in the
generated trace files, which tend to be extremely large. In a
typical system, which may contain several hundred applications,
this approach may not be feasible. Additionally if the
applications connect through Multi Threaded Server, it
becomes difficult to isolate single segment level problems even
if trace analysis is possible.

This information is now obtained from the new performance
view v$segstat and v$segment_statistics.

Setting the Statistics Levels
In order for Oracle to collect those statistics, you must have
proper initialization parameters set in the instance. The
parameter is statistics_level and is set in the init.ora. The good
news is that this is modifiable via ALTER SYSTEM command
and some underlying parameters are even modifiable via
ALTER SESSION. This parameter can take three values:

BASIC: At this setting Oracle des not collect any stats.
Although this is not recommended, you may decide to set

this in a fine-tuned production system to save some
overhead.

TYPICAL: This is the default value. In this setting, Oracle
collects the following statistics.

Buffer Cache - These statistics advise the DBA how to
tune the multiple buffer pools. The statistics can also be
collected by setting another parameter db_cache_advice
independently using initialization file, stored parameter
file, ALTER SYSTEM or ALTER SESSION. If it's
independently set, that setting takes preference over the
statistics level setting.
Mean Time to Recover - These statistics help the DBA
set an acceptable Mean Time to Recover (MTTR)
setting, sometimes due to the requirements from Service
Level Agreements with the users.
Shared Pool Sizing - Oracle can provide valuable clues to
size the shared pool effectively based on the usage and
these statistics provide information on that.
Segment Level Statistics - These statistics are collected at
the segment level to help determine the wait events
occurring at each segment. We are interested in these
statistics.
PGA Target - These statistics help tune the Program
Global Area effectively based on the usage.
Timed Statistics - This is an old concept. The timed
statistics were enabled in earlier versions with the
initialization parameter timed_statistics. However, the
statistic was so useful that Oracle made it default with
the setting of statistic_level. It can be set independently,
too; and if set, overrides the statistics_level setting.

Setting the Statistics Levels 27

28 Oracle Space Management Handbook

ALL: In this setting al the above statistics are collected as well
as an additional two.

Row Source Execution Stats - These statistics help tune
the sql statements by storing the execution statistics with
the parser. This can provide an extremely useful tool in
the development stages.
Timed OS Statistics - Along with the timed statistics, if
the operating system permits it, Oracle can also collect
timed stats from the host. Certain operating systems like
Unix allow it. It too can be set independently; and if set,
overrides the statistics_level setting.

If you set these via any of the three methods, Initialization File,
ALTER SYSTEM or ALTER SESSION, you can find out the
current setting by querying the view v$statistics_level as follows:

SELECT ACTIVATION_LEVEL, STATISTICS_NAME, SYSTEM_STATUS, SESSION_STATUS
FROM V$STATISTICS_LEVEL
ORDER BY ACTIVATION_LEVEL, STATISTICS_NAME;

The output is placed in Listing
1(http://www.dbazine.com/code/Listing1.txt).

So, set the statistics_level to TYPICAL either by ALTER
SYSTEM or by an initialization parameter file. Do not forget to
restart the database if you choose the latter.

Segment Level Statistics Collection
Now that we have set up the collection, let's examine what we
can get from there. The main dynamic performance view that is
populated is called v$segstat. Here is a description of the view.

Column Explanation
TS# Tablespace Number, corresponds to the TS# column in SYS.TS$
OBJ# The Object ID, which corresponds to the OBJECT_ID in

SYS.DBA_OBJECTS
DATAOBJ# It corresponds to the DATA_OBJECT_ID in SYS.DBA_OBJECTS
STATISTIC_NAME The most important one, the name of the statistics we are interested in

STATISTIC# A unique number to denote each statistics above. This is
NOT the same as the V$SYSSTAT statistics number.

VALUE The current value of that statistic. Please note the value is cumulative,
just like the statistic values in V$SYSSTAT. If you drop the segment and
recreate it, the value is reset.

As you can see, the columns are somewhat cryptic. Oracle
provides another view called v$segment_statistics which is based
on the above view. This view has a lot more columns and is
more descriptive with respect to the object identification. In
addition to columns like the main view, it also references the
names of the tablespace, the object, and the owner etc. so that
the user can quickly join the view with actual names.

However this view is a little slow. It's a better idea to get the
object_id from the dba_objects and search based on that. Here is
the description of the columns of the v$segment_statistics view
that are not present in the v$segstat view. The other columns are
the same as in v$segstat.

OWNER The owner of the segment
OBJECT_NAME The name of the segment
SUBOBJECT_NAME If the above is a table with partition, each partition has separate

statistics. The partition is referred to as sub-object.
TABLESPACE_NAME Tablespace where the segment resides
OBJECT_TYPE Type of the segment, TABLE, INDEX, MATERIALIZED VIEW, and

so on.

To find out what all statistics are collected, you can check the
view v$segstat_name which describes the statistic name and the
number.

Segment Level Statistics Collection 29

30 Oracle Space Management Handbook

Examining Detailed Statistics
Now we will dive in to examine the actual statistics that we
populate. Since it lets us examine stats for a specific object, we
can query like the following:

SELECT STATISTIC_NAME, VALUE
FROM V$SEGMENT_STATISTICS
WHERE OWNER = 'SCOTT'
And OBJECT_NAME = 'SALES';

This provides an output similar to Listing 2
(http://www.dbazine.com/code/Listing2.txt) Most of these
wait events are self-descriptive. Once again, these are
cumulative; so, the numbers go up as more operations continue
on that segment. In addition, like any system level statistics,
these statistics are deleted when the database is shutdown.

These segment level statistics break down the mystery
surrounding the statistics collected from v$sysstat or from
STATSPACK reports. When baffled with a number of wait
events that have already happened, the DBA can fall back on
these statistics to dig deeper and identify the exact segments
that experienced these waits which in turn contributed to the
overall system wide wait for that event.

Improvements
With these basics placed in already, let's try to improve the
collection and reporting methods to further refine the
performance examination. This can be done by creating our
own view in the same line as that provided by Oracle but with a
little enhancement. Examining the view definition of
v$segment_statistics, we note that the view refers to an internal
table called x$ksolsfts. This internal table has a very useful

column - the time when the statistics were collected. This
column, FTS_STMP, can be used to our advantage to provide
further information on the wait events. A new view, called
segstat_with_time is built from the definition of the
v$segment_statistic, identical to it except for the inclusion of a
new column called TIME_STAMP. The view creation script is
provided in Listing 3
(http://www.dbazine.com/code/Listing3.txt). The
TIME_STAMP column can let you know if the statistics are
stale and help you decide whether you should rely on them
completely. The other important column this view adds is the
INSTANCE_ID, which identifies the instance in a Real
Application Cluster (RAC) environment. This view also takes
away all but the most useful columns.

Case Study
The usefulness of the segment level statistics can be best
illustrated by a case study. Here we will create a wait scenario
and then diagnose that with the segment level statistics. In the
process, we will discover the facilities brought forth by Oracle
9i Release 2 that were missing in earlier releases. Please note
that although the case study simulated the problems as
expected when tested by the author, it is not guaranteed to
produce the same behavior elsewhere. However, it should be
able to help the reader understand the methodology.

Our example system is of OLTP nature. We are seeing
consistent performance degradation and the objective of the
exercise is to identify the problem and eliminate it. We have
taken STATSPACK reports and they show high waits for
"buffer busy waits" event. However, since the report does not
provide information on specific tables or indexes that

Case Study 31

32 Oracle Space Management Handbook

experience these waits, we can't start the process of segment
tuning. Under Oracle 9iR2 this is possible.

For the sake of demonstration, we have a table called SALES.
The table is created as per the script in Listing 4
(http://www.dbazine.com/code/Listing4.txt). We will initially
populate the table using a script in Listing 5
(http://www.dbazine.com/code/Listing5.txt). Examining
closely the Listing 5, you will notice that the customer_id column
values are loaded one bunch at a time, making the records of a
particular customer_id concentrated in a few blocks. Therefore,
during an update where the records are picked up in the
customer id sequence, they will be very much likely to be
picked from the same block by two different sessions. The test
case transaction is described in Listing 6
(http://www.dbazine.com/code/Listing6.txt), named stress.sql.
This program, a simple PL/SQL script updates records with
either the odd or even numbered sales_trans_id depending upon
the parameter passed to it, for each customer_id from 1 to 60.
This script is run from two different sessions.

The parameter passed is 1 from one session and 2 from the
other, e.g. @stress 1. If the sessions are kicked off at the exact
same time, both sessions will operate on the same customer_id
but on different records due to the odd and even numbered
sales_trans_id values, eliminating locking. However, both
sessions will most likely try to update the records in the same
block, because the records are arranged in the customer_id order
and both the scripts access the records for the same customer_id.
This will create a buffer busy waits scenario that we will identify
and eliminate.

Once the table is loaded, execute a STATSPACK report
collection. Typically in a production scenario, you would have
enabled the jobs to run STATSPACK regularly. To collect the
statistics, you would have to login as the STATSPACK user,
usually PERFSTAT and issue a command EXECUTE
STATSPACK.SNAP. This provides your baseline collection
stats.

Now run the stress script from two different sessions, with
parameter 1 in one session and 2 in other. For attaining the
same time execution, kick them from a scheduler like cron in
UNIX or AT command in Windows. After they are run, collect
the STATSPACK statistics again by issuing EXECUTE
STATSPACK.SNAP. To generate the report, run the script
spreport.sql under $ORACLE_HOME/rdbms/admin directory
which will ask you the snap_id for the collections. Give the
snap_ids just before and after the stress script. An excerpt from
the generated report has been provided in Listing 7
(http://www.dbazine.com/code/Listing7.txt). Under the
Section "Top 5 Timed Events", we note that "buffer busy
waits" is one. The system waited 3378 times for 49 seconds,
about 2.83% of all the waits times.

Armed with the information we have to unearth the segment
that experienced this wait event. Before Oracle 9iR2, it was
impossible. In 9iR2, if you have setup the statistics collection
by specifying statistic_level initialization parameter, then it is
trivial. You would issue the following query:

SELECT OWNER, OBJECT_TYPE, OBJECT_NAME, VALUE
FROM V$SEGMENT_STATISTICS
WHERE STATISTIC_NAME = 'buffer busy waits'

The result is something like this. Of course, you may see a lot
more in your environment.

Case Study 33

34 Oracle Space Management Handbook

OWNER OBJECT_TYPE OBJECT_NAME VALUE
----- ----------- ----------- ------
SCOTT TABLE SALES 3302

What we see here is the buffer busy waits were experienced by
the table SALES owner by user SCOTT. The figure 3302 also
roughly corresponded to the figure we obtained from the
STATSPACK report. You immediately know that the problem
lies in the table SCOTT.SALES. In Pre-9i Release2 Oracle
databases, this information would have been impossible to get.
In an actual production system, you would probably see a lot
more tables with the buffer busy waits and the sum of all will
correspond to the figure obtained from STATSPACK report.
This gives the DBA ability to pin down the segment either that
is a victim of a wait event or a creator of one and to take
corrective action.

Solution
In the above example since we identified the offending
segment, we will take corrective steps to fix the problem. If you
notice the buffer busy waits were because two sessions were
trying to update the same block at the same time. This can be
easily solved by making the distribution more even. In addition,
by making sure a block is less packed, we can reduce the
likelihood that a block will become hot. As a solution, we will
recreate the table with smaller pctused and larger initrans and
maxtrans parameters. This will make the table less dense. The
table creation script is provided in Listing 8
(http://www.dbazine.com/code/Listing8.txt). Next, we will
load the table in a different way as listed in Listing 9
(http://www.dbazine.com/code/Listing9.txt). Examine the
script closely. It loads the customer_id values one after another

until the maximum of 60 is reached and the cycle is repeated.
This type of loading eliminates the likelihood that a particular
block will be chosen at the same time by two sessions if the
customer_id is the same.

After this change, execute STATSPACK.SNAP again and note
the value of VALUE in v$segment_statistics for the table SLAES.
Since the value is cumulative, you will need a reference value to
compare. Now run the stress.sql script from two sessions the
same way before, with parameter 1 and 2. Finally, take
STATSPACK reports again and see the buffer busy waits
statistics. It will be much less. Now examine the
v$segment_statistics view for the table SALES; it should be much
less too.

Conclusion
Oracle 9i Release 2 provided one of the best tools a DBA can
possibly have, to drill down to the segment level for analysis
and diagnosis of wait events, even after the fact that the wait
event was experienced. This tool goes a long way in
performance related troubleshooting, which was impossible till
this time.

Some common wait events like free buffer waits, etc. are not
present in the v$segstat, Hopefully Oracle will provide them in
the future releases. This is no doubt an important step in the
direction where performance diagnosis becomes a little easier
for the DBA community.

For more information here are some links to learn more:
Oracle 9i Release 2 Manuals at
http://otn.oracle.com/docs/products/oracle9i/doc_library/rel

Conclusion 35

36 Oracle Space Management Handbook

ease2/index.htm. Search on v$segstat or v$segment_statistics for
more information.

Optimizing Oracle
Physical Design

CHAPTER

5
Optimal Physical Database Design for Oracle8i

Introduction
Oracle8i adds a number of significant new features in the areas
of indexing and space management along with major upgrades
to the support for Index Organized Tables (IOT’s). The paper
presents performance figures on index compression and IOT’s,
and analyzes the performance and operational impact of online
table reorganization, which is now supported for IOT’s. A
strong case is made for migrating certain types of table to
IOT’s though, as discussed, the change may not be transparent
at the application level.

The paper also looks at temporary tables, and explains how
they can both improve performance and reduce one specific
type of application failure. The circumstances under which
temporary tables should be used are detailed along with
application changes that should be considered. Performance
improvements achieved from both locally managed and
transportable tablespaces are also presented, and the potential
implications are explained.

Physical Database Design 101

Optimal Physical Database Design for Oracle8i 37

Physical Database Design is a large and complex subject, but
this section sets out to cover the issues that most commonly
require consideration when planning the physical structure of
an Oracle database.

38 Oracle Space Management Handbook

Because of the increasing use of disk striping and storage array
controllers, this paper assumes that I/O load balancing can be
achieved without the direct involvement of the Oracle DBA
and does not discuss the placement of the container files used
to store an Oracle database. In this context it may be worth
noting that journaled file systems such as the Veritas File
System have been shown to yield better Oracle performance
than the standard UNIX file system.

What is Physical Database Design?
Most of the design decisions that have to be made when
creating an Oracle schema are logical rather than physical, and
concern the logical definition of tables and their columns, and
views and their columns. An Oracle DDL statement such as

create table STOCK (PART# number not null primary key
, QUANTITY number not null
, LOCATION varchar2(20) not null
) tablespace DATA01 pctfree 15 pctused 0;

contains both logical and physical elements. The table and
column definitions are logical and some knowledge of them
will be required to write queries against the table whereas the
space management clauses are purely physical and no
knowledge of them is required to perform data operations
against the table. By this argument the DDL statement:

create index STOCK_LOCATION on STOCK (LOCATION)
tablespace DATA01 pctfree 50;

is purely physical. It cannot affect the result of a query or DML
operation against the table even though it may have a radical
effect on the performance of the operation.

Database Block Structure
It is important to realize that rows in an Oracle table are almost
always true variable length, and that the row length typically
changes with each update. The most common exception is a
table in which every column is of datatype CHAR or DATE as
this data is stored fixed length. However a common use of the
SQL UPDATE command is to replace a NULL value, and in
this case the row is guaranteed to expand in length. To allow
for row expansion, tables that are subject to updates should be
created with a value for the storage parameter pctfree that leaves
enough space in each block for foreseeable row expansion. The
default value of 10 (which means that INSERT will leave every
block 90% full or less) is rarely ideal and tables that are only
subject to INSERT and DELETE should always specify pctfree
0 to optimize space allocation.

If random rather than bulk deletions are performed against the
table then it is also worth considering the value for pctused. This
specifies the point at which the block will again become
available for data insertion. The default value is 40, meaning
that blocks are available for row insertion when they are less
than 40% full. A freelist mechanism identifies the blocks
available for insertion, and freelist maintenance carries a CPU
and disk I/O penalty. In general the lower the sum of pctfree
and pctused, the less freelist maintenance will take place. As this
sum approaches 99 (the maximum permitted value) a series of
negative effects will be observed, and DBA's are strongly
recommended to specify pctused 0 wherever possible. On the
other hand if a row expands and there is no longer sufficient
space for it in its original block, then the row is migrated to
another block and this causes a performance penalty on any
indexed retrieval of the row. For a table with both a significant
update rate and a high indexed retrieval rate pctfree should be set

Database Block Structure 39

40 Oracle Space Management Handbook

relatively high as the increased efficiency of indexed retrieval
will outweigh the penalty of a slightly larger table.

The block structure of B*tree indexes is broadly similar but not
identical. In this case pctfree is used only during index creation,
and leaves distributed free space in index leaf blocks. If new
keys arrive with random values rather than always being higher
than the current highest key, then index space management
during DML operations can be all but eliminated by rebuilding
the index at regular intervals with distributed free space. To
allow for a doubling of index size, the index would be built
with pctfree 50. If, on the other hand, every new index key is
higher than the previous highest key then the index should be
built specifying pctfree 0.

Block Size
There have been a number of papers at recent Oracle
conferences describing the advantages of using a database
block size greater than the traditional standard of 2048 bytes.

DBA's are strongly recommended to create Oracle databases
with a block size of 8192 bytes except where there are
compelling arguments for use of a different size. Larger block
sizes reduce the number of spanned rows (rows that cannot fit
in a single block) and save disk space in all but the smallest
tables because less of the disk is used for the gaps at the end of
each block. This disk saving in turn speeds up full table scans.
Increasing the block size will also reduce the height of the tree
for many indexes, and speed up index lookup.

Unstructured Data
Until Oracle8 the only mechanisms for storing large units of
unstructured or encapsulated data were the LONG and LONG
RAW datatypes. These have a number of functional
disadvantages, and they also store the unstructured data inline
in the row. This significantly slows full table scans, and can also
cause long chains of row pieces that have to be navigated even
during processing that requires access only to the structured
data. In Oracle8 the LOB datatypes allow unstructured data to
be stored a separate segment with its own storage parameters.
This has significant performance and storage management
benefits, but unfortunately converting a schema from LONG
to LOB datatypes requires non-trivial code changes, and many
development tools do not support the LOB datatype.

Freelists
When Oracle needs a new block into which to insert table data,
it checks the table's freelist and takes the block at the head of
the list. If there are no blocks on the freelist it advances the
high water mark (HWM), which records the last block which
has ever contained data. If there are no blocks left beyond the
high water mark then more space must be allocated to the
table. This mechanism works well for small numbers of users
inserting into the same table, but eventually the number of
users sharing the same insert block causes serialization
problems (they start having to queue to use the block). This can
be detected by checking in v$waitstat for buffer busy waits on
data blocks, and the solution is to recreate the object using the
storage option freelists to add additional freelists.

In an Oracle Parallel Server (OPS) environment, tables that will
be subject to inserts from more than one instance should be

Unstructured Data 41

42 Oracle Space Management Handbook

created with the storage option freelist groups to ensure that
database instances do not have to share insert blocks. Always
bear in mind, however, that only applications specifically
designed for a parallel server environment will give good
performance within that environment. Although it is outside
the scope of this paper, there is rather more to designing for
OPS than simply remembering to use freelist groups.

Extents
In Oracle every data dictionary object that requires storage
owns a storage segment; this in turn consists of one or more
extents each of which is a group of logically contiguous
database blocks. It is up to lower levels of software and device
controllers to determine whether the blocks are physically
contiguous. All data blocks are the same size, but extents may
be any number of blocks up to the capacity of the data file (or
raw device) in which the extent resides. Each segment must
exist solely within a single tablespace, but it may extend across
multiple data files or raw devices within that tablespace and
may therefore extend across the entire disk domain directly
accessible by the server.

Extent sizing can be specified at both the tablespace and
segment level using the storage parameters initial, next and
pctincrease. Although extents can be any size, it is strongly
recommended that every extent in a tablespace should be the
same size. This is best achieved by setting the default initial and
next for the tablespace to the same value, setting pctincrease to
zero, and never specifying these parameters at segment or
object level. The result is that classic tablespace fragmentation
becomes impossible, as every free extent in the tablespace

should be either the same size as the requested extent or a
multiple of it.

Many DBA's are concerned that this practice will cause some
objects (segments) to have an excessive number of extents.
This raises the interesting question as to how many extents
might be regarded as excessive. Provided that extents are a
multiple of the multiblock read count there is no evidence of
any performance effect from having multiple extents other than
the load of allocating and deallocating the extents. Using Oracle
8.1.5 under NT Workstation 4.0 on a 366Mhz Pentium II with
256Mb of RAM, extent allocation took about 12 msec and
extent deallocation about 5 msec. Over the life of the average
table this load is trivial even for 1,000 extents. Despite this, the
approach of using uniform partition sizes is normally associated
with an arrangement where tablespaces are grouped by segment
size rather than by object association. This issue is discussed
further under Transportable Tablespaces below.

Space management within the SYSTEM tablespace should be
left entirely to Oracle, and no user objects should ever be
created in this tablespace.

AutoExtension
When a segment requires a new extent, and there is no free
extent in that tablespace that is equal to or greater than the
number of blocks requested, then the user receives an error.
This can be partially overcome by allowing at least one of the
files comprising the tablespace to autoextend. If this property is
set then Oracle tries to enlarge the file by a specified amount
until the file either exhausts the space available in that file
system, or reaches a preset maximum length. This mechanism
is highly valued by some, and totally deprecated by others.

AutoExtension 43

44 Oracle Space Management Handbook

Where a mount point or file system contains data files for many
tablespaces, and the DBA is unable to predict which of these
will run out of space first, then there may be some benefit in
allowing the individual tablespaces to compete for the
remaining space. However it is recommended that adequate
free space should be preallocated to each tablespace used by
any mission critical application, and that active monitoring be
performed to predict space exhaustion before it occurs.

Partitioning
Oracle is entirely capable of managing tables of several hundred
gigabytes, comprising hundreds of millions of rows.
Performing maintenance operations such as bulk deletion,
backup or index creation on such tables is challenging,
especially in environments where maintenance windows are
restricted. The requirement to have each segment within a
single tablespace means that there must be a tablespace at least
as large as the largest segment, and this poses real space
management problems on most platforms.

The solution is to partition the logical object into many physical
segments, splitting it up on the basis of a partition key
comprised of one (or more) table columns. In Oracle 8.1 this
can be done on the basis of key ranges or by a hash value based
on the key. For exceptionally large tables it may make sense to
first divide the table into a series of key ranges, often based on
date, and then to subdivide these key ranges using hash
partitioning.

Both tables and indexes can be partitioned, and an important
feature of partitioning is that although every partition of an

object must have the same logical structure, they may have
different physical segment properties. Thus the bulk of the
partitions of a history table can be directed to read only
tablespaces on the grounds that past history may not be
updated, whereas more current records can be placed in
tablespaces that are available for writing. This approach can
dramatically reduce regular backup times and backup volume.

Partitions, and especially date-based partitions, also offer highly
efficient bulk deletion to partition-aware applications through
the SQL DDL statement:

alter table … drop partition …;

This is especially attractive for partitioned tables with locally
partitioned indexes. These are indexes where each index
partition refers to one and only one table partition. This
arrangement allows table partitions to be dropped and new
table partitions to be added without any need to maintain a
table-level index. The downside of this arrangement in OLTP
applications is that unless the index key contains the partition
key, then on index lookup every index partition must be visited.
For a unique key lookup on a table with 1,000 partitions this
would incur an overhead of several hundred to one when
compared with a lookup on a global index on the same unique
key (whether or not this global index was partitioned).

Global indexes can take considerable time (and enormous
amounts of temporary segment space) to build, and become
invalid or unavailable if any partition is removed or is
inaccessible. However they offer the only efficient means of
retrieving low numbers of rows from a very large table when
the partition key is not among the criteria.

Partitioning 45

46 Oracle Space Management Handbook

Index Compression
The bottom level of any B*tree index is the sequence set, an
ordered list containing each key value with a pointer to the row
that contains the key. In all previous versions of Oracle this
"pointer" has been the rowid, though in Oracle8i the special
case of Index Organized Tables requires a rather different
convention, discussed later in this paper.

Although this ordered list was highly compressed in Oracle
Version 5, more recent versions have stored every instance of
every key in full and this can consume significant disk space.
Oracle8i allows indexes with concatenated keys to be built with
compression on a specified number of leading key columns e.g.

create index SAMPLE_WORDS
on SAMPLE (WORD1, WORD2, WORD3, WORD4, WORD5)
nologging compress 3;

In the testing performed for this paper, compression was
always allowed to default to the maximum number of columns
permitted (which in turn depends on whether or not the key is
unique).

The author's experience of compressed indexes was almost
universally positive. They saved significant amounts of space
and were slightly faster to create than their uncompressed
equivalent, presumably because there were fewer blocks to
write. No significant performance differences were measured
retrieving from compressed and uncompressed indexes,
although time did not permit the testing of long index range
scans. These were expected to favor compressed indexes
because less index blocks would require to be visited.

A deliberately severe update test resulted in a 46% increase in
CPU activity over the same test when applied to a table with an
uncompressed index, but the increase in elapsed time was
almost insignificant. This test involved updating the 3rd
column of a 5 column compressed index, forcing the index
entry to be deleted and moved to another part of the sequence
set. No I/O penalty could be detected during this test.

Index Organized Tables (IOT's)
Tables of Organization Index were introduced with Oracle8,
but had a number of restrictions that made them generally
unattractive. In Release 8.1 most of the restrictions have been
removed, and this special type of table looks to have become a
realistic design option. The DDL to create them is
straightforward, e.g.

create table SAMPLE6
(ID#
, constraint SAMPLE6PK primary key (ID#)
, CODE
, …
, SUBCODE
) organization index pctthreshold 20;

Put at its simplest, an IOT is a primary key index acting as a
table. If you look in Oracle's online data dictionary, the table
exists in sys.tab$ but it has no matching entry in sys.seg$. An
index segment, with the same name as the primary key
constraint, is used to store the "table". For this to be effective
the sequence set of the index has to be capable of storing non-
key columns along with the key columns. As a result no entry
in the sequence set may exceed half the block length. This
restriction is required because a B*tree must be able to hold a
minimum of two keys per sequence set block. When defining
an IOT the user may specify the maximum sequence set entry
size as a percentage of the available space in each block - the

Index Organized Tables (IOT's) 47

48 Oracle Space Management Handbook

default maximum is 50%. Any data over this size (pctthreshold) is
stored in a separate overflow segment.

The claimed advantages of IOT's are space savings (the primary
key is only held once) and faster access because having located
the sequence set entry Oracle has also located all of the column
data unless that data is in an overflow segment. An IOT also
breaks one of the "golden rules" of relational data by storing
the data in a guaranteed order though it is risky for an
application to rely on this property. If the application requires
data in a specified order than that data should be retrieved
using an ORDER BY clause.

With Oracle8i IOT's may have secondary indexes, but a
potential problem arises here. The table rows are sequence set
entries, and their position can and will change as other keys are
added and deleted around them. Oracle has implemented a
simple solution to this problem - a secondary index on an IOT
stores the primary key of the target row rather than its rowid.
Optionally a pseudo rowid may also be stored to allow more
direct navigation to the target row, though over time this can
become inaccurate and the navigation will revert to using the
primary key.

Insert Times
Because the index structure has to be built during row
insertion, and the rows must be correctly positioned in the
sequence set, it has always been clear that inserting into an
unindexed conventional table will be faster than loading into an
IOT. On the other hand, tables of any size normally have at
least a primary key index and therefore the total time to insert

rows into the table must include the creation or maintenance of
this index.

Tests were performed to compare the insertion of 100,000
rows into an IOT with the insertion of the same data into a
conventional table followed by applying a primary key
constraint to build an index. In the first test the primary key
was long (WORD1, WORD2, WORD3, WORD4, WORD5)
and although the conventional table loaded much faster, this
advantage was lost in the time taken to build the index. The
space saving was, as expected, massive.

TABLE
TYPE

INSERT
TIME

INDEX
TIME

TOTAL
TIME

TABLE
BLOCKS

INDEX
BLOCKS

TOTAL
BLOCKS

Conven-
ional

11 85 96 986 768 1,754

IOT 86 - 86 - 1,040 1,040

Table 1 Performance with long primary key (all times in seconds).

When a very short key was used on exactly the same data, a
rather different picture emerged. The figures for the IOT barely
changed at all, the conventional table was much faster to index,
and its space overhead was reduced. The only way found to
markedly reduce the insert time for the IOT was to present the
data in key order, which removed the need to insert keys into
the middle of sequence set blocks. Even in this case the insert
time for the IOT was about 40% longer than the sum of the
insert and index times for the conventional table.

Insert Times 49

50 Oracle Space Management Handbook

TABLE
TYPE

INSERT
TIME

INDEX
TIME

TOTAL
TIME

TABLE
BLOCKS

INDEX
BLOCKS

TOTAL
BLOCKS

Conven-
tional 11 32 43 986 294 1,280

IOT 85 - 85 - 1,040 1,040
IOT
(in key
order)

60 - 60 - 1,040 1,040

Table 2 Performance with short primary key (all times in seconds).

Retrieval Times
The results from the retrieval tests were less marked than had
been anticipated. Retrieval by primary key from an IOT with
no overflow segment was faster than retrieval from the
equivalent conventional table with a primary key index, and
retrieval through a secondary index on an IOT was slower than
retrieval through a secondary index on a conventional table.
The differences in I/O traffic (more correctly block visits) were
consistent with this model.

The overhead of using the secondary index on an IOT was not
excessive. However it was felt that because retrieval via a non-
unique index typically leads to more rows being retrieved per
query than using a primary key index, retrieval from an IOT via
a secondary indexes might amplify the negative performance
impact in a production environment.

Application Impact
For almost all purposes an IOT has precise functional
equivalence to a traditional Oracle table, now referred to as a
Heap Organized Table. However no table used by existing

applications should be converted to an IOT without first
checking whether and how that application use the pseudo
column rowid.. Represented in character form, the rowid for an
IOT not only requires more space (42 bytes as against 18 for a
conventional table) but also changes if the primary key is
updated. This latter behavior will only affect an application that
updates twice using the same rowid, once to update the primary
key and then again to update any column in the row. Such
behavior is deprecated.

Online Table Reorganization
With version 8.1 it is possible to rebuild or reorganize an Index
Organized Table in parallel with normal use of the table,
including DML. The minimal version of the syntax is
delightfully simple e.g.

alter table SAMPLE move online;

The keyword online is optional. If it is not present then DML
against the table is blocked for the duration of the operation
but during timing tests it was found that in the absence of any
update traffic move online was consistently around 30% faster
than plain move. The reasons for this anomaly are unknown.

The great concern was that the time to perform the move, or
rebuild, operation would be greatly increased if updates
occurred in parallel with the alter table … move online but
tests showed that the performance was surprisingly good. A
compute bound update loop was coded in PL/SQL to perform
10,000 updates and commit after each update. Run on an
otherwise empty machine this took 74 seconds to complete.
The rebuild, run without any other load, took 21 seconds for a
total of 91 seconds to perform the two tasks serially.

Online Table Reorganization 51

52 Oracle Space Management Handbook

When the two tasks were run in parallel by starting the update
and then immediately starting the rebuild, the total elapsed time
for the update was 127 seconds with the rebuild running in
parallel for 119 of those seconds.

A series of further tests were performed at lower update
volumes. These demonstrated that updating in parallel with a
rebuild or move approximately doubled the time taken per
update and slowed the rebuild by almost exactly the time taken
by the update. From the tests performed alter table … move
online appears to impose a reasonable overhead and to scale
well.

As stated above, these update tests were performed in
transactions that contained only a single update. Execution of
alter table … move online requires two "quiet points".
Execution of the statement will neither start nor complete
while there are uncommitted transactions against the table;
while it is underway any number of transactions may be
initiated against the table, but they must all complete before the
rebuild will end. This is unlikely to be of concern unless the
application contains very long running transactions.

For applications that want to get closer to 24X365 but expect
to have a need to move or reorganize tables, the availability of
alter table … move online presents a further motivation to
consider the use of Index Organized Tables.

Temporary Tables
Many applications use the database to handle arrays of transient
working data. This is especially common in applications written

using Rapid Application Development (RAD) tools that may
not feature the robust memory management features required
in order to handle data arrays.

The use of fully persistent database objects (tables) to hold
transient session-specific data can cause a number of
performance and functional problems in an Oracle
environment. All changes to such tables are recorded in both
rollback segments and the redo log for recovery purposes, and
in multi-user environments which share a permanent table for
transient use it may be necessary to index every row inserted
using the session id (SID). Shared tables also require the
application to perform expensive deletes at end of transaction
or session, and to implement recovery code to clean up after
failed sessions. An alternative approach is for each session to
create its own "temporary table" but there are a number of
performance implications in this approach, and it does not
scale well.

Oracle 8.1 introduces the statement form:

create global temporary table GTEMP
(COL1 …
, …
) on commit preserve/delete rows;

Any row inserted into such a table is visible only within the
transaction that inserted it unless the qualifier on commit
preserve rows is present. In this case the row continues to be
visible to the creating session after commit and until deleted (or
end of session). Global temporary tables are therefore a valid
design option for any table whose data is never required to be
persistent beyond the end of the transaction or session that
inserted it.

Temporary Tables 53

54 Oracle Space Management Handbook

These temporary tables are allocated in the current user's
temporary tablespace, and observation indicates that a single
temporary segment is used in each temporary tablespace for all
temporary tables for all sessions that use that temporary
tablespace. The temporary segment was not observed to shrink
as temporary rows were automatically deleted at end of
transaction or end of session, but it was apparent that the space
released was being made available to new transactions. The
only control over the tablespace used for temporary tables is
through the SQL statement

alter user … temporary tablespace …;

Bulk insertion into an unindexed temporary table was about
twice as fast as into the equivalent persistent table, and
generated about 95% less redo log entries. More surprising, full
table scans appeared to be about 25% faster. Temporary tables
may be indexed, but this was not tested during the writing of
this paper. It should be noted that DDL may not be performed
on a temporary table if it contains rows for any session.

Application Impact
Many applications that use persistent tables as session
workspace are subject to error conditions when the processing
inadvertently bypasses the removal of entries made in the table.
This problem can exist in any application that preserves the
temporary data across more than one transaction, as the data
will persist unless specifically deleted. The problem may be
especially severe where the session creates its own table to use
as workspace, because automatic transaction rollback on error
will never undo a DDL operation. The result in both cases is
that application failure can leave "temporary" rows in the table,

and these may cause future sessions using the table to get
incorrect results. The author has seen a number of applications
that contained defensive code to recover from rows
accidentally left by an earlier session. A major advantage of
global temporary tables is that this scenario cannot occur.

In most cases an application can have a work table switched
from a conventional table to a global temporary table without
code changes being required. This should result in some
performance improvement, and will remove the risk that a
failed session will leave persistent rows in the database.
However most applications will require modification to fully
leverage global temporary tables. The changes are typically
quite straightforward because they are mainly concerned with
the removal of logic that is no longer required. Examples of
functionality that can be removed include table create and drop
for applications that built a table with a unique name per
session, row deletion at end of transaction or session, daemons
to tidy up after sessions that have failed to delete their rows,
and indexing by session identifier. None of these are required
when using global temporary tables.

Locally Managed Tablespaces
Conventional Oracle tablespaces have their space allocation
recorded in the data dictionary in the tables sys.fet$ and sys.uet$.
Oracle 8.1 introduces an alternative, which is for the tablespace
to contain an allocation bitmap for a series of equal size
extents. The statement

create tablespace SAMPLE
datafile 'D:\oracle\oradata\…' size 1000M
extent management local uniform size 100K;

Locally Managed Tablespaces 55

56 Oracle Space Management Handbook

creates a 1 gigabyte tablespace in which every extent will be
100k bytes. Objects can be created specifying extent sizing, but
these parts of the DDL are quietly ignored. For DBA's who
like the idea of tablespaces with consistent extent sizes to
prevent fragmentation, locally managed tablespaces provide the
mechanism to fully enforce this approach. Unfortunately they
also invalidate any space usage reporting scripts that rely on
sys.fet$ and sys.uet$. Such scripts must be extended to use
sys.x$ktfbfe and sys.x$ktfbue for locally managed tablespaces. The
columns in these virtual tables map easily to the column names
in the equivalent data dictionary tables, and the additional
virtual table sys.x$ktfbhc summarizes free space with one row
per datafile. There are no gv$ or v$ views to externalize these
virtual tables.

In a series of tests Locally Managed Tablespaces appeared to
work well and to use significantly less resource for space
allocation and deallocation. Traditional tablespaces were found
to take more than three times as long to allocate an extent, and
more than twice as long to deallocate. Impressive though these
figures are, they are only significant to applications that
perform altogether too many space management operations
(possibly the creation and dropping of temporary tables).
Nevertheless the improvements should be of major benefit to
instances suffering from type ST lock conflicts. The author
would argue that these can invariably be resolved by application
design change, but this option is not available to many (most?)
system administrators.

Transportable Tablespaces
It is a common requirement to migrate data from one Oracle
database to another. Two principal mechanisms have been used

in the past. Either the data was transferred using Oracle's
distributed database support or it was unloaded from one
database, a file physically transported to the destination, and
the data reloaded. Both approaches have strengths and
weaknesses, and both consume considerable resources and take
significant processing time for large tables. In Oracle 8.1 one or
more tablespaces may be copied and "plugged into" another
database subject to a set of restrictions; in addition a single
physical copy of a read only tablespace may be simultaneously
part of many physical databases. One of the major restrictions
in both cases is that the source and destination instances must
be running on the same hardware and OS platforms, and must
be the same Oracle release.

Although not strictly part of space management, transportable
tablespaces have a number of implications for space planning
in an Oracle 8.1 environment because the mechanism requires
self-contained sets of tablespaces. Put simply, these are sets of
tablespaces where all of the partitions and indexes are present
for every table or cluster in the tablespaces. Optionally the
definition may be extended to include all targets of referential
integrity constraints. This is turn draws into question the use of
specific tablespaces for a size of object, and makes more
attractive the traditional approach of allocating tables and
indexes to tablespaces on a functional basis.

The portable tablespace mechanism requires that the source
tablespaces be read-only for the duration of the data copy
phase of the operation, and therefore the source instance
cannot be said to maintain 100% availability. Nonetheless with
careful allocation of objects to tablespaces, transportable
tablespaces can offer a highly efficient data transfer mechanism.
They also provide an additional incentive for use of the
autoextend mechanism to avoid the need to preallocate space

Transportable Tablespaces 57

58 Oracle Space Management Handbook

to a tablespace, because unused datablocks within a tablespace
simply add to the time taken to copy the datafiles and therefore
to the time for which the tablespace must be read-only.

In a simple experiment under NT 4.0 on a 366 MHz Pentium
II moving a tablespace containing 18 objects, the export
processing on the source database took under 20 seconds, and
the processing required to plug the tablespace into the
destination database took less than 5 seconds. Of course copy
time varies with tablespace size and hardware speed.

The major negatives found with the feature were that it was
liable to "finger trouble" when transporting multiple
tablespaces, and that it was necessary to enter the SYS
password from the keyboard on each instance in order to
operate the mechanism.

Conclusions
To summarize the key recommendations made in this paper:

Previous good practice in space management remains valid
with Oracle 8.1, especially the notion of equal extent sizes
throughout a tablespace. Locally managed tablespaces allow
this approach to be enforced and have performance
advantages though few sites should be performing enough
space allocation to see a significant change in overall
performance as a result.
Database block size should be 8192 bytes in most cases, and
almost never 2048 bytes.
If possible LOB datatypes should be used in place of
LONG datatypes.

Care in selecting the values of pctfree and pctused for tables,
and pctfree for indexes, will be rewarded by improved
performance and reduced need to reorganize.
Index compression is recommended for concatenated
indexes as a way of both reducing index create time and
saving space.
Index Organized Tables are worth considering for any large
table whose primary key is a substantial part of the average
row, and for tables that may benefit from online
reorganization. With either of these conditions satisfied, the
less secondary indexes are used to access the data, the
stronger the motivation to use an IOT.
If applications must use the database as working storage,
then global temporary tables have significant performance
advantages and will allow the application to be simplified
and made more robust in many cases.
Portable tablespaces look to be a promising feature, but one
that may require reappraisal of the way in which objects are
allocated to tablespaces.
The majority of these recommendations have no impact
whatever on the application code, and all have the potential
to improve application performance.

Conclusions 59

60 Oracle Space Management Handbook

Verifying Segment
Backup Scripts

CHAPTER

6
Did the Backup Work?

We have clients set up with a mixture of hot and cold backups.
The question asked each morning is 'Did the backup work?'
Right now we are telnet--ing to the server and checking the log
file generated by the backup script, or we have this log file
emailed to the support DBA so the check can be done without
telnet. This is fine, but we have to connect into the instance
each morning anyway for all of our normal morning checks.
Could we combine these multiple check actions into one? I
would rather see all from inside the instance.

Problem
I want to bring information from outside of the instance, into
the instance. The restriction is I don't want to write anything in
C or any other language that would not normally be supported.
So I can use SQLPlus and shell scripts only in order for this to
all be supportable by the next DBA. There are always several
possible approaches. Here is one that I think will be easily
supported and understood.

Our requirements are:
Know if the file copy completed successfully
Know when the file copies were performed last
Keep all of this inside of the instance

Have this information available to anyone

How Do We Know?
The most common way to know that the backup worked
correctly is to view the log file. But what if we don't want to
wade through the log file or set up grep scripts to pull out just
the lines we want? I am more a fan of just doing the ls -l
command on the backup mount point. This shows me the file
size and the date modified. So I expect this to be the same as
the data mount points. Here I have to admit to a certain
laziness. I don't always check the file size against the source
size. I just check that there is some free space on the backup
mount point and that the file date is from last night. This really
is not secure enough. So let's work with the ls -l command since
that will give us the most secure results if we do it correctly.

> ls -l *.dbf
-rw-r----- 1 oracle dba 1468022784 Jul 30 03:16 data0101.dbf
-rw-r----- 1 oracle dba 115359744 Jul 30 03:17
data_stage0101.dbf
-rw-r----- 1 oracle dba 68173824 Jul 30 03:18 history0101.dbf
. . .

Parsing This String
The information we are really interested in is, the file name, the
time and date modified, and the size in bytes. If we had a line
of data already in a variable in the instance we could parse out
the information we want.

If we are working from the right to the left, we know that the
file name is everything at the right end of the line, up to the
blank. So we can pull out the file name and then remove it
from the line.

How Do We Know? 61

62 Oracle Space Management Handbook

select instr(str,' ',-1,1) into blnk from dual;
select substr(str,blnk+1,60) into file_name from dual;
str := rtrim(substr(str,1,blnk));

Now we have the time at the end of the line. We can take that
off using the same approach and do the same for date, month
and size to get the rest of the data we want.

Then to save this information we will create a table:

create table t_sizes
(file_name varchar2(60)
,dt date
,bytes number(12))
tablespace meta_data storage (initial 64k next 64k pctincrease 0)
pctfree 0 pctused 80;

Now we can put this data into the table so it can be viewed by
anyone at anytime.

insert into t_sizes (file_name,dt,bytes)
values (file_name
 ,to_date(file_mon||' '||file_date||' '||file_time,'mon dd
hh24:mi')
 ,file_size);

Bring It In
So we have the code that can be used to parse out the line, but
how do we get that line in? We chose the following looping
structure:

while read PAR1
do
sqlplus id/pwd <<EOF
declare str varchar2(180) := '$PAR1';
begin
. . .
end;
/
exit
EOF
done
exit 0

This allows us to treat each line as a parameter to the SQLPlus
script. The shell 'while' loop gets the next line and serves it to
the script. So if we pipe the output of the ls -l command into
this loop structure, we will process each line and put the data
into a table. We have the following as a driver (in a file called
sizes.sh):

sqlplus id/pwd <<EOF1
truncate table t_sizes; -- we only want the current information
exit
EOF1
ls -l /oraback/*.dbf | sizes_load.sh

The file sizes_load.sh then contains:

while read PAR1
do
sqlplus id/pwd <<EOF
declare str varchar2(180) := '$PAR1';
blnk number(2);
file_name varchar2(60);
file_time varchar2(5);
file_date varchar2(2);
file_mon varchar2(6);
file_size varchar2(12);
begin
str := rtrim(ltrim(str));
select instr(str,' ',-1,1) into blnk from dual;
select substr(str,blnk+1,60) into file_name from dual;
str := rtrim(substr(str,1,blnk));
select instr(str,' ',-1,1) into blnk from dual;
select substr(str,blnk+1,60) into file_time from dual;
str := rtrim(substr(str,1,blnk));
select instr(str,' ',-1,1) into blnk from dual;
select substr(str,blnk+1,60) into file_date from dual;
str := rtrim(substr(str,1,blnk));
select instr(str,' ',-1,1) into blnk from dual;
select substr(str,blnk+1,60) into file_mon from dual;
str := rtrim(substr(str,1,blnk));
select instr(str,' ',-1,1) into blnk from dual;
select substr(str,blnk+1,60) into file_size from dual;
str := rtrim(substr(str,1,blnk));
insert into t_sizes (file_name,dt,bytes)
values (file_name
 ,to_date(file_mon||' '||file_date||' '||file_time,'mon dd
hh24:mi')
 ,file_size);
commit;
end;

Bring It In 63
/

64 Oracle Space Management Handbook

exit
EOF
done
exit 0

These scripts are run each night at the end of the backup script
so we have the most current data in the instance.

Use It
Now that we have this data in a usable form in the instance,
how do we check that the backup was ok? What we want to do
is just check these actual file sizes against the file sizes defined
in dba_data_files. When I did this the first time my script told
me that there was a difference in the file size for all data files. I
then saw the same difference in the size defined by
dba_data_files and the actual live data files. The file size in
dba_data_files is one block, as defined by dba_block_size, less
than the actual size. I assume this is the file header put on by
the instance. So our comparison code becomes:

variable block_size number
begin
select value into :block_size from v$parameter where name =
'db_block_size';
end;
/

select a.name,a.bytes dba_bytes,b.bytes backup_bytes,b.bytes-a.bytes
diff,b.dt file_date
from
(select substr(file_name,instr(file_name,'/',-1,1)+1,30) name,bytes
from dba_data_files) a
,(select substr(file_name,instr(file_name,'/',-1,1)+1,30) name
 ,bytes-:block_size bytes,dt from t_sizes) b
where a.name = b.name(+);

NAME DBA_BYTES BACKUP_BYTES DIFF
FILE_DATE
------------------------------ ---------- ------------ ---------- -----

system.dbf 81788928 81788928 0 30-
JUL-02
patrol_data01.dbf 31457280 31457280 0 30-
JUL-02
data0101.dbf 1468006400 1468006400 0 30-
JUL-02

So we can see that the files were created this morning and the
sizes match. Our backups worked wonderfully!

Use it Elsewhere
There are other ways to bring this data in but this is one that
works for us. We are also using this same approach to bring in
other information, like free space on the mountpoints.

Now I can perform all of my morning checks with one script
inside of the instance.

Use it Elsewhere 65

66 Oracle Space Management Handbook

Data Segment Update
Internals

CHAPTER

7
How Much Does an Update Cost?

There are several application generators on the market that
adopt the basic approach of "keep it simple." Simple code can
be easier to generate and easier to maintain, even if it may seem
a little less efficient. But if a screen generator always generates
code to update every column in a table, even if the user
changes just one field on the screen, how much does this cost
you at the database?

A Brief History of Screen Generators
Once upon a time, SQL*Forms (as it then was) used to have a
single SQL statement embedded for each block that was that
block's update statement. This statement would update (by
rowid) every column in the table that had been referenced in
the block. This seemed to be a nice idea, because it kept the
code simple and efficient at the client end of the system: there
was no need to run a CPU-intensive task to discover which
fields had actually changed, and no need to construct
dynamically an exact piece of SQL to update the matching
columns at the database.

Some time around Forms 4.5 (I may be wrong with the version,
and wait to be corrected), Oracle introduced a flag that you
could set to make the choice between a single 'update
everything' statement, and a dynamically generated 'update just

the minimum set of columns' statement. Which option is the
smarter?

What Does It Cost to Update a Column?
Specifically we are interested in what it costs to update a
column without changing it. If the database could detect that
an incoming update was not actually going to change anything
then the marginal cost of the redundant update would be
minimal. Unfortunately, the database does not try to check for
redundant updates. After all, it's reasonable to assume that
updates are supposed to change the data. It would be counter-
productive to add a check that was almost always true simply to
make a small saving on those 'extremely rare and pointless'
occasions when a 'no-change' update arrives.

So what could happen if you update a single column in a table
using a single transaction? Clearly, the row has to be locked and
the data modified, so an Interested Transaction List (ITL) entry
in the block has to be acquired. A transaction table slot has to
be taken in the undo segment header to act as a globally visible
"reference" for the transaction, and an undo record has to be
written into an undo block to describe how to reverse out the
changes you have just made to the data block. The changes to
all three blocks have to be recorded in the redo log (initially in
just the log buffer), and in this simple case this will take just
one redo record.

When you then commit the transaction, the transaction table
slot is updated with the commit SCN and marked as free, and
the address of the undo block you have used may also be
written back into the free block pool in the undo segment
header block. These changes to the undo segment header block
are recorded in the redo log (buffer) and the log writer process

What Does It Cost to Update a Column? 67

68 Oracle Space Management Handbook

(lgwr) is called to flush the log buffer to disc, after which your
process is informed that the commit has succeeded. (Oracle
may also, and in this case probably would, go back and clean up
the changed data block, but would not record these clean-up
changes in the redo log).

Assume that you, the user, updated just one field on screen —
the description above covers the amount of work the database
has to do to apply your change. But what if the screen
generator has updated the whole row — what marginal costs
appear?

The cost of taking the ITL entry, locking and updating the row
has probably not changed much, and the cost of acquiring the
undo segment header block has not really changed.

But the volume of data written to the undo record has probably
gone up significantly — instead of an overhead of about 100
bytes plus the old version of one column, we now have the
overhead plus the old version of all the columns. But perhaps
that won't matter too much, after all Oracle writes in blocks
not records — but if our undo records are now four times the
size we will, on average, write about four times as many undo
blocks as we need to.

Similarly, the redo record will have changed significantly. In the
perfect case, the redo record would have been about 200 bytes
long for the update (plus a further 200 relating to the segment
header block and transaction audit vector). This would
probably have been padded to 512 bytes (the typical o/s block
boundary) with redo wastage as we issued the commit. But the
main redo record consists largely of two change vectors — the
vector for the table block, and the vector for the undo record

— and both of these have increased in size because the undo's
redo record now includes the old version of all the columns
and the table's redo record now includes the new version for all
the columns. So the rate at which you churn out redo may have
gone up by a factor of something between two and four — and
in many high-throughput systems the speed of getting the redo
to disc is often a critical performance issue.

But There's More
Extra volume of undo and redo isn't necessarily the most
significant issue though — after all, the extra volume generated
and buffered isn't usually dramatic given the size of the basic
overheads. Furthermore, because Oracle's basic architecture
tries to push disk writes into background "asynchronous"
processes, the end-user doesn't often see the time-lag due to
disk-writes. But there are several considerations that will have a
direct impact on the way that the end user sees the
performance of the system.

In the event of a column being updated with a 'no-change'
update, what do you think Oracle does about:

Row-based triggers of the type 'update of {column list}'
Before row
After row
Instead of

Updates to indexes that include that column
What if those are B*tree indexes
What about bitmap indexes
What about function-based indexes

But There's More 69

70 Oracle Space Management Handbook

What does Oracle do about referential integrity
If this is a column at the child end of a relationship
If this is a column at the parent end of a relationship

 Triggers
Create a simple table with trigger, and try a test like the one
show in figure 1:

create table t2 (
 id_gp number(4),
 id_p number(4),
 n2 number(4)
);

insert into t2 values (1,1,1);
commit;

create or replace trigger t2_bru
before update of id_gp on t2
for each row
-- when (
-- new.id_gp != old.id_gp
-- or new.id_gp is null and old.id_gp is not null
-- or old.id_gp is null and new.id_gp is not null
--)
begin
 dbms_output.put_line('Updating');
end;
/

column rid new_value m_rid

select rowid rid
from t2
where rownum = 1;

update t2 set id_gp = id_gp where rowid = '&m_rid';

The trigger fires. The same thing happens if the trigger is an
after-row update. It is left as an exercise to the reader to
confirm my assumption that the same thing happens on an
instead of trigger.

In passing, a before-row trigger actually generates one extra
undo record and one extra redo record — even if it takes no
action because of a when clause, such as the necessarily
complex clause commented out in the example — so if you
have the choice, it is probably a little more efficient to use
after-row triggers.

Indexes
You have to be a little fussier with some of the experiments
with indexes, as you may want to count logical I/Os to get a
full picture of the cost, and this may require you to build a table
that is large enough to have a multi-level index. However, with
some tests it will be sufficient to examine undo, redo, and
locks, and not rely on something as sensitive as logical I/O.

So what happens if you do a 'no-change' update on a column
which is part of a simple B-tree index? Nothing. Oracle detects
that the indexed value has not changed, and doesn't even
traverse the index, let alone lock an entry. The same is true of
simple bitmap indexes.

You might wonder if something nasty happens when you
switch to function-based indexes - does the function have to be
called 'just in case', does Oracle track the dependency between
the functions and the columns involved in the function
properly? The answer is that everything works properly - you
don't find redundant executions of the function or trips to the
index. As a test case, you could start with the table from fig. 1,
and run the following SQL.

Indexes 71

72 Oracle Space Management Handbook

 create or replace function my_fun(
i1 in number,
i2 in number

)return number deterministic
as
begin
 dbms_output.put_line('Testing function');

return i1 + i2;
end;
/

create index t2_idx on t2(my_fun(id_gp,id_p));

update t2 set id_gp = id_gp where rowid = '&m_rid';

update t2 set id_gp = id_gp + 1 where rowid = '&m_rid';

You will find that the function is called once (because there is
only one row in the table) as the index is created, but it is not
called for the 'no-change' update. By the way, the function will
be called twice in the second update - once to find the original
location in the index, and once to calculate the new location.
You may find that the function is called twice more if you issue
a rollback - I believe I observed this in the earliest releases with
function-based indexes - but it doesn't seem to happen any
more.

Referential Integrity
This, perhaps, is where the crunch comes on OLTP systems.
You get hit twice - first as a child, and then as a parent.

Take the table from fig. 1, and insert another 9, identical rows
into it to get a total of 10 rows. Then run the following tests
and check the logical I/O etc.:

update t2 set id_gp = id_gp;

> 10 rows updated.
alter table t1
add constraint t1_pk primary key (id_gp);
alter table t2
add constraint t2_fk_p1 foreign key (id_gp) references t1;
update t2 set id_gp = id_gp;

> 10 rows updated

You will find that the number of db block gets (current mode
gets) goes up by 10 when the integrity constraint is in place.
Why? Because on each update, Oracle checks the foreign key
constraint - and it does this by tracking down the parent's
primary key index using current mode gets. If you have a large
parent table, this could mean three current mode gets every
time you update a child column redundantly.

Switching to the parent end of the trap. You need only try to
do a 'no-change' update on a parent row when there is no index
on the foreign key on the child table to discover that you get
the dreaded TM/4 lock. Foreign key indexes aren't necessary if
you don't update or delete parent key values, but if you are
having problems with random 'hangs' and deadlocks being
reported then perhaps you have the classic problem, where you
know you don't update the parent keys, but your application
generator is doing it behind your back.

There's Always a Trade-off
By now, you may have decided that you obviously have to go
back and rewrite lots of code. But writing code to produce the
perfect SQL statement every time is likely to increase the risk
of errors in the code. The trade-off between risk (and time to
code, test and debug) and performance is always a valid point
of argument, so if the server is nowhere near capacity then it
may be perfectly sensible to ignore the issue — at least in the
short term.

There's Always a Trade-off 73

74 Oracle Space Management Handbook

And there's another, more subtle, trade-off. If your application
generates the perfect SQL for every update that the front-end
can fire, then the number of different SQL statements could
escalate dramatically.

In theory, if your table has N columns, then there are
power(2,N) — 1 possible update statements — even if you
restrict yourself to single row updates by rowid. Unless you
increase the size of the shared pool, and tweak a couple of
parameters such as session_cached_cursors, you may find that your
savings in one area are offset by extra expenses (such as library
cache contention) appearing elsewhere.

Conclusion
Allowing front-end tools to take the easy option when updating
data - by writing a single SQL statement for all possible updates
— can add a significant load to your system. If you are running
client/server, or N-tier, then you may be better off using extra
CPU at the client end of the system to build custom SQL to
minimize the cost at the server. The decision is not black and
white, though. Make sure that the cost is worth the benefit.

Segment Transaction
Slot Internals

CHAPTER

8
Interested Transaction List (ITL) Waits Demystified

What is ITL?
Ever wondered how Oracle locks rows on behalf of
transactions? In some RDBMS vendor implementations, a lock
manager maintains information on which row is locked by
which transaction. This works great in theory, but soon the
lock manager becomes a single point of contention, as each
transaction must wait to get a lock from the manager and then
wait again to release the lock. This severely limits the scalability
of the applications. In fact, application developers of some
RDBMS products despise holding locks for a long time, and
often resort to a full table lock when all that's needed is to get a
few rows locked. This creates further waits, and consequently,
scalability suffers.

So how is that different in Oracle? For starters, there is no lock
manager. When a row is locked by a transaction, that
information is placed in the block header where the row is
located. When another transaction wishes to acquire the lock
on the same row, it has to travel to the block containing the
row anyway, and upon reaching the block, it can easily tell that
the row is locked from the block header. There is no need to
queue up for some single resource like a lock manager. This
makes applications immensely scalable.

Interested Transaction List (ITL) Waits Demystified 75

So, what portion of the block header contains information on
locking? It is a simple data structure called "Interested

76 Oracle Space Management Handbook

Transaction List" (ITL), a linked list data structure that
maintains information on transaction address and rowid. ITL
contains several slots or place holders for transactions. When a
row in the block is locked for the first time, the transaction
places a lock in one of the slots with the rowid of the row that
is locked. In other words, the transaction makes it known that
it is interested in the row (hence the name "Interested
Transaction List"). When the same transaction or another one
locks another row, the information is stored in another slot,
and so on. After a transaction ends via commit or a rollback,
the locks are released and so are the slots that were used to
mark the blocks, and these newly freed slots are reused for the
other transactions. So there is in fact a queue, but it's at a block
level, not at the entire database level or even at a segment level.

The next logical question that comes up is, how many slots are
typically available? During the table creation, the initrans
parameter defines how many slots are initially created in the
ITL. When the transactions exhaust all the available slots and a
new transaction comes in to lock a row, the ITL grows to
create another slot. The ITL can grow up to the number
defined by the maxtrans parameter of the table, provided there
is space in the block. Nevertheless, if there is no more room in
the block, even if the maxtrans is high enough, the ITL cannot
grow.

What Is an ITL Wait
So, what happens when a transaction does not find a free slot
to place its lock information? This can occur because either (i)
the block is so packed that the ITL cannot grow to create a free
slot, or (ii) the maxtrans has already been reached. In this case,
the transaction that needs to lock a row has to wait until a slot

becomes available. This wait is termed as ITL waits and can be
seen from the view v$session_wait, in which the session is waiting
on an event named "enqueue."

Let's see this description of the wait in action. Assume our
table has initrans of one and maxtrans 11. A typical data block
right after the creation of the table will look like figure 1.

Since the initrans is one, there is only one slot for the ITL. The
rest of the block is empty. Now we inserted three rows into the
table. These will go into this block, and the block will look like
figure 2.

Note how the empty space is reduced. At this point, a
transaction called Txn1 updates Row1, but does not commit.
This locks Row1, and the transaction places the lock in the slot
number one in the ITL as shown in figure 3.

What Is an ITL Wait 77

78 Oracle Space Management Handbook

Then another transaction, Txn2, updates the row Row2 and
wants to lock the row. However, there are no more slots in the
ITL available to service the transaction. The maxtrans entry is
11, meaning the ITL can grow up to 11 slots and the block has
empty space. Therefore, ITL can grow by another slot and Slot
number two is created and allocated to Txn2 (refer to figure 4).

Now the empty space in the block is severely limited, and it will
not be able to fit another ITL slot. If at this time another
transaction comes in to update the row three, it must have a
free slot in the ITL. The maxtrans is 11 and currently only two
slots have been created, so another one is possible; but since
there is no room in the block to grow, the slot can't be created.
Therefore, the Txn3 has to wait until either of the other
transactions rolls back or commits and the slot held by it
becomes free. At this time the session will experience an ITL
waits event as seen from the view v$session_wait.

Simulation
To better illustrate the concept, let's illustrate such waits using a
case. Create the following table and then populate it with
several rows. Note maxtrans value.

CREATE TABLE TAB1
(COL1 NUMBER,
 COL2 VARCHAR2(200))
INITRANS 1 MAXTRANS 1
/
DECLARE
 I NUMBER;
BEGIN
 FOR I IN 1..10000 LOOP
 INSERT INTO TAB1 VALUES
 (I,'SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS');
 END LOOP;
 COMMIT;
END;
/

Now update a row of the table from one session, but do not
commit it.

UPDATE TAB1 SET COL2 = 'UPDATED' WHERE COL1 = 1;

From another session, update row number two and do not
update it.

UPDATE TAB1 SET COL2 = 'UPDATED' WHERE COL1 = 2;

This session will wait. Why? It's updating a row for COL1 = 2,
not the same row updated in the other session for COL1 = 1.
So why is the session waiting? It's because the first transaction
occupied the only available ITL slot. The second transaction
needed another slot to place its lock information, but since the
maxtrans I defined is one, the ITL could not grow to create
another slot. Thus, the latter transaction has to wait until the
former session releases the lock and makes the slot available.

Simulation 79

80 Oracle Space Management Handbook

Now increase the MAXTRANS of the table by issuing

ALTER TABLE TAB1 MAXTRANS 11;

and redo the above test. The second session will not wait this
time because the ITL had enough free slots for both
transactions.

How to Reduce ITL Waits
The primary cause of ITL waits is that free slots in the ITL are
not available. This can be due to

low setting of the maxtrans, which places a hard limit on the
number of transactions that can have locks on a block
or, the block is so packed that there is no room for the ITL
to grow OR
or both

Therefore, setting a high value of initrans will make sure that
there are enough free slots in the ITL, and there will be
minimal or no dynamic extension of the ITL. However, doing
so also means that there is less space in the block for actual
data, increasing wasted space.

The other option is to making sure the data is less packed so
that ITL can grow enough to accommodate the surges in ITL.
This can be done by increasing pctfree, increasing freelists and
freelist groups parameters for a table. This will make a block hold
less data and more room for the ITL to grow. As a direct result
of the reduction in packing, the table will experience fewer
buffer busy wait events, and performance will be increased.

How to Diagnose the ITL Wait
How do you know that a segment is experiencing ITL waits?
The best answer will be found in the Segment Level Statistics
provided in Oracle9i Release 2. To check for ITL waits, set up
the statistics_level to TYPICAL in init.ora or via ALTER
SYSTEM, then examine the segment statistics for the waits.

SELECT OWNER, OBJECT_NAME
FROM V$SEGMENT_STATISTICS
WHERE STATISTIC_NAME = 'ITL waits'
AND VALUE > 0

This unearths the objects that were subjected to ITL waits
since the start up of the instance. Note that this view resets
when the instance bounces. (For a more detailed explanation of
this view and how to set it up, please refer to the article by this
author here in DBAzine.)

In versions earlier than 9i, checking for ITL waits is tricky.
When you suspect that a database is suffering from these waits,
query the view v$session_wait. If the event on which the system
is waiting is "enqueue," then the session might be experiencing
ITL waits. However, enqueue is a very broad event that
encompasses any type of locks, so it does not accurately specify
the ITL waits. When the wait event is experienced, issue the
following complex query:

Select s.sid SID,
 s.serial# Serial#,
 l.type type,
 ' ' object_name,
 lmode held,
 request request
 from v$lock l, v$session s, v$process p
 where s.sid = l.sid and
 s.username <> ' ' and
 s.paddr = p.addr and
 l.type <> 'TM' and
 (l.type <> 'TX' or l.type = 'TX' and l.lmode <> 6)

How to Diagnose the ITL Wait 81

82 Oracle Space Management Handbook

union
select s.sid SID,
 s.serial# Serial#,
 l.type type,
 object_name object_name,
 lmode held,
 request request
 from v$lock l, v$session s, v$process p, sys.dba_objects o
 where s.sid = l.sid and
 o.object_id = l.id1 and
 l.type = 'TM' and
 s.username <> ' ' and
 s.paddr = p.addr
union
select s.sid SID,
 s.serial# Serial#,
 l.type type,
 '(Rollback='||rtrim(r.name)||')' object_name,
 lmode held,
 request request
 from v$lock l, v$session s, v$process p, v$rollname r
 where s.sid = l.sid and
 l.type = 'TX' and
 l.lmode = 6 and
 trunc(l.id1/65536) = r.usn and
 s.username <> ' ' and
 s.paddr = p.addr
order by 5, 6
/

The output of the query will look something like this.

SID SERIAL# TY OBJECT_NAM HELD REQUEST
----- ------- -- ---------- ---------- --------
 36 8428 TX 0 4
 36 8428 TM TAB1 3 0
 52 29592 TM TAB1 3 0
 52 29592 TX (Rollback=RBS1_6) 6 0

Note how the sessions 36 and 52 both have a TM (DML) lock
on the table TAB1 of type 3 (Row Exclusive), but session 52
also holds a TX (Transaction) lock on the rollback segment of
mode 6 (Exclusive) and Session 36 is waiting for a mode 4
(Share) lock. If this combination of locking occurs, you can be
sure that session 36 is waiting for ITL on the table TAB1.
Beware of a similar but different diagnosis when two sessions
try to insert the same key value (a real locking – primary key
violation). In that case, you would also see an additional TX

lock on a rollback segment from the session that is waiting; for
ITL waits, this TX lock on the rollback segment would not be
seen.

Needless to say, this is a rather convoluted and inaccurate way
to diagnose the ITL waits in pre-Oracle9i Release 2 versions.

What INITRANS Value is Optimal
Conversely, how do you know if the initrans setting is too high
and the space is just being wasted? Ascertaining this is possible
by using a few random block dumps from the segment in
question. First, find out the header file# and header block# of
the segment by issuing the following query:

SELECT HEADER_FILE, HEADER_BLOCK
FROM DBA_SEGMENTS
WHERE OWNER = '...'
AND SEGMENT_NAME = '...';

Use the output of the query to do a block dump of the header
block.

ALTER SYSTEM DUMP DATAFILE <file#> BLOCK MIN <block#> BLOCK MAX
<block#>;

This will produce a trace file in the user_dump_destination
directory. Open the trace file and find out the section on extent
control via the following:

What INITRANS Value is Optimal 83

84 Oracle Space Management Handbook

Extent Control Header

Extent Header:: spare1: 0 spare2: 0 #extents: 1 #blocks: 10
last map 0x00000000 #maps: 0 offset: 2080
Highwater:: 0x02011f87 ext#: 0 blk#: 0 ext size: 10
#blocks in seg. hdr's freelists: 0
#blocks below: 0
mapblk 0x00000000 offset: 0
Unlocked
Map Header:: next 0x00000000 #extents: 1 obj#: 53689 flag: 0x40000000
Extent Map

0x02011f87 length: 10

Find out the real number of blocks for the segment from
dba_segments via the following:

SELECT BLOCKS FROM DBA_SEGMENTS
WHERE OWNER = '...' AND SEGMENT_NAME = '...';

Say this returns 12, and the #blocks shows 10; this means
the first two blocks are header blocks; the data starts at the
third block. Take a dump of the third block, which is obtained
by adding two to the header block# obtained above.

ALTER SYSTEM DUMP DATAFILE <file#> BLOCK MIN <block#> BLOCK MAX
<block#>;

This will produce another trace file in the user_dump_dest
directory. If you issued it during the same session as above,
then the trace will be written in the trace file opened earlier.
Open the file and locate the following section.

buffer tsn: 8 rdba: 0x02011f88 (8/73608)
scn: 0x0000.389b8d81 seq: 0x01 flg: 0x04 tail: 0x8d810601
frmt: 0x02 chkval: 0x2ef5 type: 0x06=trans data
Block header dump: 0x02011f88
Object id on Block? Y
seg/obj: 0xd1ad csc: 0x00.389b8d81 itc: 4 flg: - typ: 1 - DATA
fsl: 0 fnx: 0x0 ver: 0x01
Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x0003.003.000024cc 0x00804067.050a.13 C-U- 0 scn 0x0000.389b304e
0x02 0x0007.010.00002763 0x00801f49.0453.01 C--- 0 scn 0x0000.389b2628
0x03 0x0002.00a.000025d5 0x00804d42.04b2.25 C--- 0 scn 0x0000.389b2811
0x04 0x0006.006.00002515 0x00800962.03c8.18 CU 0 scn 0x0000.389b3044

This shows some very important information on the block,
especially in the ITL section shown above. This table has an
initrans entry of four, so there are four lines, one each per the
ITL. The Flag column above the flag -U- indicates that the
particular ITL was used. In this case, only two of the ITLs were
used, and the other two were never used. However, this is the
case for this block only. By selecting block dumps from other
randomly selected blocks, you could have an idea how many
ITLs are actually used. Then you may decide to reduce the
initrans.

Automatic Block Management in Oracle9i
In Oracle9i, the process of space management inside a block is
somewhat changed due to the introduction of the Automatic
Block Management (ABM) feature, also known as Automatic
Segment Space Management (ASSM). The option is specified at
the tablespace level in the storage parameter as SEGMENT
SPACE MANAGEMENT AUTO. For instance, the
tablespace TS1 can be created as

CREATE TABESPACE TS1
DATAFILE '...'
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

The last line of this code does the magic. In the ABM mode,
Oracle maintains a bitmap for each segment with the
information on the block. A bitmap is a data structure with a
bit representing each block. When a block becomes available
for INSERT, simply setting the corresponding bit in the
bitmap rather than using freelists makes the information
available. So, what does this have to do with ITL waits? The
very cause of ITL waits is not freespace management, but the
unavailability of a slot in ITL waits. So you still have to look for

Automatic Block Management in Oracle9i 85

86 Oracle Space Management Handbook

ITL waits and correct them using initrans and maxtrans. In fact,
the problem may become exacerbated because the block
becomes quite packed following an efficient space management
system, and that may lead to lack of space for ITL growth. You
can prevent this by keeping a large initrans for the segment.

Conclusion
Proper setting of initrans and maxtrans and packing of the
blocks is vital to avoid ITL waits in Oracle. It's interesting to
note that locking doesn't cause waits, but rather, the
mechanism for locking as well as and poor planning. However,
the good news is that reorganizing the table and adding more
slots to the Interested Transaction List can easily fix this
situation.

Automated Space
Cleanup in Oracle

CHAPTER

9
Automated Space Cleanup in Oracle

This article proposes a PL/SQL package that can let you
quickly and easily implement automated database-wide cleanup.
This can be useful for environments where large numbers of
objects are processed, generating residual segments:
development databases, data-warehouses data-transforms,
batch-based environments, etc. This PL/SQL package is self-
tuning, portable, and (almost) platform and version
independent.

This solution has been tested on Unix (HP 10.7/11, Sun Solaris
7/8, AIX 4, Linux 2) and Windows servers (NT4, 2000), on
Oracle 7.3.x, 8.0.x, 8.1.x. It should also work with Oracle 9i. It
requires some knowledge of UNIX shell scripts, SQLPlus
scripts, and PL/SQL. However, full scripts are provided and
minimal knowledge should be enough to start.

Stray Temporary Segments

Automated Space Cleanup in Oracle 87

Part of maintaining quick response times for the database is
making sure that tablespaces are free of stray temporary
segments, as well as the rollback segments (RBS's) are optimally
sized. Temporary segments in TEMPORARY tablespaces exist
for the lifetime of the instance in order to reduce the number
of recursive SQL on the data dictionary. The tablespace can
also inappropriately fill up and run out of space. The new
(Oracle 8.1.5) locally managed tablespaces were designed to

88 Oracle Space Management Handbook

reduce this problem. However, the majority of Oracle
installations still use classical dictionary managed tablespaces.

Some events (e.g., index create or rebuild, table move or create
as select, including during data-loads/imports, sorts generated
by complex queries) can create a lot of temporary segments.
For a discussion of temporary segments behavior during a table
move / index rebuild see my article Automated Table/Index
Reorganization In Oracle8i. If the reorg action fails or is cancelled,
a lot of residual temporary segments may remain in both USER
and TEMP tablespaces. Also, when a segment is dropped,
initially, it is changed to a temporary segment, to allow for
possible rollback in case of failure. This can also generate stray
temp segments.

Important changes can also create some tablespace
fragmentation, with the presence of many adjacent free space
blocks. Tablespace fragmentation is not an issue in itself, but
keeping track of all the extents can become a very expensive
operation. Therefore the need for free space merge (coalesce)
procedures. Normally, for Oracle7 and newer, the SMON
process will attempt to clean up the tablespaces of these
residues. For that to happen, the tablespace must have
DEFAULT STORAGE (PCTINCREASE > 0).

Every five minutes SMON will scan the free extent table
(sys.fet$) for adjacent free extents to be coalesced into single
extents and will coalesce five extents at a time. Unless SMON
is posted by a foreground process, it will only wake up every 25
cycles, that is two hours and five minutes, and will scan the
segment table (sys.seg$) for temporary segments to be cleaned.
Even then it will only clean up to eight temporary segments at a
time, and only if it can get the required locks within five

seconds. So temporary segment cleanup can appear to take a
long time, hours, even days. Also, it appears that SMON has to
examine all the free space extents, before actually starting the
work on the first ones, which can lead to long delays in space
management procedures, like creating or dropping new objects,
or growing existing objects.

To do space management, a process needs the single lock ST
(space transaction); if another process has got it, SMON will
have to try again later. Foreground processing has priority over
housekeeping, so SMON will give up the ST lock very easily.
This means that a busy system which does a lot of disk-based
sorting or creation of transient objects could see how SMON
keeps giving up the lock before doing much work. That is why
sometimes, because of the large number of extents allocated, is
appears that SMON is not working or doing cleanup. Some
people may sometimes use the term "missed SMON post" for
this situation. The cleanup itself can also cause very high CPU
consumptions.

Evaluating the numbers of temporary segments - by using the
OEM Tablespace Manager, or with a query:

select tablespace_name, segment_name, segment_type, sum(bytes),
count(extent_id)
from dba_extents
where segment_type = 'TEMPORARY'
group by tablespace_name, segment_name, segment_type;

TABLESPACE_NAME SEGMENT_NAME SEGMENT_TYPE SUM(BYTES)
COUNT(EXTENT_ID)
----------------- -------------- -------------- ---------- ------------

IDX01 30.53431 TEMPORARY 91996160
3
TEMP 3.19262 TEMPORARY 69058560
843

Stray Temporary Segments 89

90 Oracle Space Management Handbook

Manual Cleanup of Temporary Segments
SMON performs temporary segment cleanup when it is posted
explicitly by another foreground process. You can make use of
this fact to force SMON to clean up temporary segments more
promptly. SMON is posted whenever a space transaction fails.
So you can trigger temporary segment clean up by using several
methods:

in svmgrl issue the command 'oradebug wakeup {PID}'
where {PID} is the Oracle process ID of SMON - here is a
script by Steve Adams (on www.ixora.com.au) which does
just that – post_smon.sql
(http://www.ixora.com.au/scripts/sql/post_smon.sql).
create a table and abort before completion, thus generating
a signal for SMON to wake up
create a table that will fail rapidly (e.g. use STORAGE (
INITIAL 32 K NEXT 20000 M), again posting SMON
create a small table with a primary key, then drop the key,
which becomes a temp segment posting SMON to clear
a normal shutdown will force SMON to complete clean up
of temp segments, but does not coalesce
in a PERMANENT tablespace - PCTINCREASE 0
disables SMON activity - PCTINCREASE > 0 enables it
in a proper TEMPORARY tablespace or in a
PERMANENT tablespace with PCTINCREASE > 0 the
usual method is to issue an 'ALTER TABLESPACE
tablespace_name DEFAULT STORAGE (MINEXTENTS
1);' - you can use any storage clause, and you do not have to
change the current setting - this will drop temp segments,
but will not coalesce the free space. 'ALTER

TABLESPACE tablespace_name COALESCE;' will do that
for you

Starting with Oracle7 a number of events in your INIT.ORA
file can be used to stop space management recursive calls - they
are recommended to be used only with Oracle Support's help.

10061 - prevents SMON from handling temp -- e.g.,
event="10061 trace name context forever, level 10"
10269 - prevents SMON from coalescing
10268 - prevents forward coalescing
10901 - prevents extent trimming

Starting with Oracle8 you can also use an event to force the
cleanup of temp segments that are not currently locked:

drop_segments - set at session level, where TS#+1 is the
tablespace number as in the query (select name, ts# from
ts$;) and adding 1 - if the value is 2147483647, then all
tablespaces are cleared

o alter session set events 'immediate trace name
drop_segments level TS#+1';

Similarly, starting with Oracle7 you can also use an event to
force the coalesce of free space segments:

COALESCE - set at session level, where TS# is the
tablespace number as in the same query as above

o alter session set events 'immediate trace name
COALESCE level TS#';

Manual Cleanup of Temporary Segments 91

92 Oracle Space Management Handbook

Recommendations Regarding Temporary Segments
The classical recommendations are:

have all user tables/indexes with DEFAULT STORAGE
(PCTINCREASE 0), to obtain equally sized extents
have all user tablespaces with DEFAULT STORAGE
(PCTINCREASE 1), to allow SMON to work correctly
TEMP and RBS tablespaces have DEFAULT STORAGE
(PCTINCREASE 0), leaving the DBA to deal with this
the default TEMP tablespace of all users (excepting SYS),
should be changed from SYSTEM to something else
if SMON is busy cleaning up TEMP segments containing a
large number of extents and cannot service 'sort segment
requests' from other sessions, pointing the users at a
PERMANENT tablespace as their temporary tablespace
can alleviate the problem and help keep the system running
until SMON is free again

However, today most authors would recommend a few changes
from the above:

have all user tablespaces with DEFAULT STORAGE
(PCTINCREASE 0), to stop SMON from using resources
run a job to do cleanup once a day (e.g. at 7 a.m. before,
business starts)

Locking
to find out what users do, what they run, what resources
they consume, use the script id_sql.sql
(http://www.dbazine.com/code/id_sql.sql.txt).
to examine locks the easiest thing is to use the Oracle
Enterprise tools (Lock Manager, Top Session, etc.)

Problems with Rollback Segments
Along with increased TEMP activity, often there is increased
RBS activity as well. This is not really within the scope of the
present paper, but I'll still mention that RBS's make for a
complex topic, and I have chosen not to attempt automatic
repairs to more complex RBS problems like lost or collecting
transactions, etc. This can be another paper.

Recommendations Regarding Rollback Segments
The usual recommendations are:

the sizing and on-line/off-line switching of RBS's should be
done manually
today's authors tend to get away from allocating specific
large RBS's to large transactions, advocating equally sized
rollback segments, tuned to handle any transaction
the optimal resizing/shrinking should be set to happen
automatically
an RBS should be probably sized to 10% of the largest table
size, with 10 - 20 equally sized segments (minextents 10).
optimal is often set to minextents * minimum extent. pctincrease is
always 0.

Problems with Rollback Segments 93

94 Oracle Space Management Handbook

Automated Space Cleanup
Our strategy can be a combination of cron jobs and a PL/SQL
package (pkg_cleansys). I have been running the package for a
few years with no problems. The execution times are very
small, seconds for one object, most of the times. The package
runs automatically every morning, at 7 am, for 5-10 minutes,
and then the log is emailed to the DBA. There is a lot of output
displayed if only run from SQL*Plus, for troubleshooting and
detailed logging purposes.

Prerequisites
you should have some system privileges (see the beginning
of the install_cleansys.sql script. Available at
http://www.dbazine.com/code/install_cleansys.sql.txt
set utl_file_dir = * (or at least c:\temp, or /tmp, etc.) in
init.ora, in order to allow log files to be created
set job_queue_processes = 2 (or higher) in init.ora, in order to
allow dbms_job scheduling to work

There are no associated tables. Practically, there is no hit on
redo logs, TEMP space, and RBS's. Memory and CPU
consumption are negligible, unless there are some serious
problems, in which case you should really run the package.

Overview of the Package
The Automated Cleanup package (pkg_cleansys), if set so, via its
parameters, attempts to:

truncate sys.aud$ table
clean up temporary segments in all tablespaces

reset pctincrease to 1 for tablespaces to wake up SMON
coalesce free space in all tablespaces
shrink all rollback segments to the optimal size
turn autoextend off for all files
set pctincrease 0 for tables and indexes, if any with pctincrease >
0
grant unlimited quota to object owners
set pctincrease 0 for tablespaces for the SAFE algorithm (as
per Oracle white paper 711)
set pctincrease 1 for tablespaces if the SAFE algorithm is not
used
rebuild unusable indexes, if any
detect some generic unavailability conditions
it does NOT handle locked or lost transactions
it does NOT handle locally managed tablespaces

The code (circa 1000 lines) performs a lot of error checking
and decision making in support of the commands. The results
of the run are written into the /tmp or c:\temp directories.
Upon completion, an email message can be sent to the DBA
and the process is ready to start again.

When run manually in an SQLPlus session, display procedures
ensure that debugging and detailed logging are made as easy as
possible - currently many of these modules are commented out
to avoid crashing the package because of overloading the server
output buffer - uncomment them selectively for databases with
very large numbers of objects.

Automated Space Cleanup 95

96 Oracle Space Management Handbook

Although it will not account for all situations, the package does
log a wide variety of errors. The DBA will treat errors manually
as the automated system will only try to re-run a session in case
of failure. Some errors, like "failed because of resource busy",
simply mean that a lock could not be obtained, as some other
process was using the object, and can be ignored, as it will
probably succeed on the next run. A number of conditions and
options are also available to be enabled or disabled in the
package body. If the package is run automatically with
'DBMS_JOB', we get only the summary output,
(http://www.dbazine.com/code/DB1-
CLEANsysPKG.log.txt) which can include captured error
messages.

 Setup
The package is installed into the default Oracle schema
'MHSYS', which I use to host my automation packages. IT
CAN BE INSTALLED, AS IS, FOR UNIX AND NT
BASED SERVERS. It is a pretty comprehensive piece of
software, which is compatible with Oracle 7.3.x or higher, on
both UNIX and NT, and includes routines to detect the
current OS, Oracle version and SID.

The code is amply commented. Run the install_cleansys.sql script
as user 'SYSTEM' from SQLPlus. Before installing, read the
top of the package body, just in case you need to make some
modifications. This section can also be used for tuning later, by
changing the values of a number of constants. Make sure the
script does not drop the existing schema 'MHSYS' if already
installed. The defaults will cover most situations and, most
likely, nothing will need to be changed. Sessions can vary

between 1 - 10 minutes. Have the logs emailed to you or, at
least, examine them manually.

You can use scripts to schedule or run the package, and to
email the logs, similar to the ones described in my article
Automated Cost Based Optimizer (Oracle Magazine Online - Sept
2000). For a list of Frequently Asked Questions and tips on
running my packages, you can visit
www.hordila.com/mhwork.htm.

Setup 97

98 Oracle Space Management Handbook

Using Oracle TEMP
Files

CHAPTER

10
Temporarily Yours: Tempfiles

I'm sure you've spent countless evenings discussing deep
philosophical questions like, "If a tablespace that no one knows
about drops in the woods, do we need to recover?" With
Version 8.1, Oracle has finally answered this question with a
solid, "No."

Every user has a temporary tablespace that's behind the scenes
to be used only for the duration of statements. You should not
be able to put any permanent object in this tablespace. All users
usually share it. Now the maintenance of this temp tablespace
just got a whole lot easier.

Don't Wait to Create
Before 8.1, every time you created a tablespace, you needed to
wait while all the blocks were created in the file. This could take
a fairly long time, and seemed to be in proportion to how long
it had been since you last slept. With Oracle 8.1, the new temp
file is created in seconds.

create temporary tablespace TEMP01
tempfile '/oracledb/oradata/lcav/temp0101.dbf' size 1024M
extent management local uniform size 1M;

Notice that we're creating a temporary tablespace on a
temporary file. This will take the 1G on the mount point, but

does not spend the time to write the block headers through the
complete file.

Don't Backup
Since these temporary tablespaces don't hold any objects and
are created in seconds, there's no reason to back these up. So in
your hot backup script, you can exclude the tablespaces that are
built on temporary files.

cursor c1 is
select tablespace_name from sys.dba_tablespaces
minus
select tablespace_name from sys.dba_temp_files;

We do not spend the time copying the file and don't need to
allow space for this file.

Don't Recover
Of course, since we didn't back up the file, we don't recover it.
If you execute:

Alter database backup controlfile to trace;

you'll see the following after the create statement for the
controlfile:

Commands to add tempfiles to temporary tablespaces.
ALTER TABLESPACE TEMP01 ADD TEMPFILE
'/oracledb/oradata/lcav/temp0101.dbf' REUSE;
End of tempfile additions.

The tablespace exists, but there's no file under it until you add
it. Oracle doesn't need to do anything to this file during
recover, so no time is spent on it.

Don't Backup 99

100 Oracle Space Management Handbook

Don't Copy for Standby
A corollary for these points is that the file isn't needed for the
standby database. You will need it if you're going to use it as a
read-only instance in that case, simply add the tempfile to the
tablespace as with the recover process previously noted.

Don't Add Overhead
Because it is temporary and managed locally, we're not adding
any overhead to the system tablespace. There's no logging
being done, and a coalesce is never performed. Since all of the
extents are the same size, there's never a need to coalesce the
free extents.

This does mean that we're not going to see any mention of this
tablespace or file in dba_extents, dba_segments, or dba_free_space.
Oracle has given us new views to look at for these temp files.

I use v$temp_extent_pool, v$tempstat, and v$temp_space_header the
most. You'll still use v$sort_usage to see who's doing what in the
temporary tablespace (from my Dbazine article, Who Took All
the Temp?):

set pagesize 10000
set linesize 133
column tablespace format a15 heading 'Tablespace Name'
column segfile# format 9,999 heading 'File|ID'
column segblk# format 999,999,999 heading 'Block|ID'
column blocks format 999,999,999 heading 'Blocks'
column username format a15
select b.tablespace,b.segfile#,b.segblk#,b.blocks
,a.sid,a.serial#,a.username,a.osuser,a.status
from v$session a
,v$sort_usage b
where a.saddr = b.session_addr
order by b.tablespace,b.segfile#,b.segblk#,b.blocks;

Give It a Try
So add a tempfile and set it as your temporary tablespace. You
can see the usage from the v$ tables. Now you'll have much
more time to get back to the important questions like, "How
many DBAs can dance on the head of a pin?"

Give It a Try 101

102 Oracle Space Management Handbook

Monitoring TEMP
Space Usage

CHAPTER

11
Who Took All the TEMP?

We have a user that submitted a query with a three-way join
with an 'order by.' No problem. This happens every day. The
difference here is only two of the tables were joined so we had
a Cartesian product runaway. Our temp tablespace was set to
auto-extend, so the query did complete. Of course, it wasn't the
result set that the user wanted.

Unfortunately, we didn't even notice until we did file backups
that night, at which point it no longer all fit. So after careful
thought and consideration, it occurred to us that we really
didn't have a good grasp of what was happening in the
temporary tablespaces. And that notion compelled us to
investigate and find out answers to the real question: "Who
took all the TEMP?"

Where Are My TEMP Tablespaces?
First we needed to find the tablespaces that could be affected
by this. It is not defined by the contents column in the
dba_tablespaces table, but better defined by the following query:

Select distinct temporary_tablespace from dba_users;

There can be multiple tablespaces fulfilling this function but
there is usually only one that the end users are assigned to
access. So this is the one we will investigate.

Show Me the Objects
Now that I have the tablespace name I can query dba_extents to
see the allocated extents;

set pagesize 10000
set linesize 133
column tablespace_name format a10 heading 'Tablespace|Name'
column file_id format 9,999 heading 'File|ID'
column block_id format 999,999,999 heading 'Block|ID'
column blocks format 999,999,999 heading 'Blocks'
column segment_name format a15 heading 'Segment Name'
column segment_type format a15 heading 'Segment Type'
break on tablespace_name skip 1 on file_id skip 1
select tablespace_name, file_id, segment_name
,segment_type, block_id, blocks
from dba_extents
where tablespace_name = 'TEMP'
order by file_id, block_id;

The first rows of my output look like the following:

TABLESPACE
NAME

FILE
ID

SEGMENT
NAME

SEGMENT
TYPE

BLOCK
ID BLOCKS

TEMP 20 20.1042 TEMPORARY 1,042 260
20.1042 TEMPORARY 1,302 260
20.1042 TEMPORARY 6,782 260
20.1042 TEMPORARY 7,042 265
20.1042 TEMPORARY 7,307 265
20.1042 TEMPORARY 7,572 270

Who Are the Users?
This is interesting output but the question still remains: who is
using those objects? As of Oracle 8.0 we have a new view to
easily see this.

Show Me the Objects 103

104 Oracle Space Management Handbook

column tablespace format a10 heading 'Tablespace|Name'
column segfile# format 9,999 heading 'File|ID'
column segblk# format 999,999,999 heading 'Block|ID'
column blocks format 999,999,999 heading 'Blocks'
break on tablespace on segfile#
select b.tablespace,b.segfile#,b.segblk#,b.blocks
from v$sort_usage b
order by b.tablespace,b.segfile#,b.segblk#;

This gives the following:

TABLESPACE
NAME

FILE
ID

BLOCK
ID BLOCKS

TEMP 20 1,042 6,979

This new view gives me basically the same information as
dba_extents, except it only shows the starting block number, not
the block number for each extent. So where I had 78 rows
above, here I have 7 rows.

Let's add in the session information so we can see who the user
is.

column username format a10
select a.tablespace,a.segfile#,a.segblk#,a.blocks
,b.sid,b.serial#,b.username,b.osuser,b.status
from v$sort_usage a
,v$session b
where a.session_addr = b.saddr
order by a.tablespace,a.segfile#,a.segblk#;

Output:

TABLESPACE
NAME FILE ID BLOCK ID SID SERIAL # USER

NAME OSUSER STATUS

TEMP 20 1,042 10,139 426 4517 OPS
$ORACLE ACTIVE

With these results, we now have the sid and serial number, so
we can kill the session. The hitch here is that the user can

simply resubmit it. What we can then do is refine our question
to be: "What statement is causing the explosion in TEMP?" To
get this answer we just join with v$sqltext:

Break on tablespace on sid on serial# on blocks
select a.tablespace, b.sid, b.serial#, a.blocks
,c.sql_text
from v$sort_usage a
,v$session b
,v$sqltext c
where a.session_addr = b.saddr
and b.sql_address = c.address
order by a.tablespace,b.sid,b.serial#,c.address, c.piece;

Output:

TABLESPACE
NAME SID SERIAL # BLOCKS SQL_TEXT
TEMP 426 4517 21,274 select * from appointment

order by start_time

As you can see, we finally the answer to our question. This
view is changing constantly but we are really looking for the
query that seems to be stuck in there. Statements that need help
will stay in the result set, and you will see the numbers of
blocks continue to increase.

A Happy Ending
Now I can capture the code before killing the runaway session.
This way I can talk the user through some changes before they
submit it again.

We can find the same query by looking at all active queries. But
this additional view gives me more documentation when going
to the user and also removes out any doubt that I have the
right query without killing and running again.

A Happy Ending 105

106 Oracle Space Management Handbook

Oracle9i Self-
Management Features

CHAPTER

12
Oracle9i Self-Management Features: The Early
Winners

Introduction
BMC Software sells a number of tools to help manage Oracle
dataservers. As each new version of Oracle moves into
production we need to form a view on the additional features
that may be required in our products to help our customers
fully exploit their Oracle instances, and also to identify those
product features that will no longer merit continued
development investment because Oracle has met within their
software a need which had traditionally required an external
solution. This paper reports some of the findings from a study
of the initial production release of Oracle9i. The sole purpose
of the study was to discover the extent to which Oracle had
increased the ability of the dataserver to manage itself. The
study took the form of structured experiments rather than
observation of production use. The conclusions are therefore
tentative until confirmed or disproved by some brave pioneer
site, giving rise to the words "early winners" in the title of the
paper.

The paper does not cover the new Oracle9i features in the
areas of backup and recovery, nor does it discuss Oracle's Real
Application Clusters (RAC), the replacement for Oracle Parallel
Server.

No suitable clustered platform was available to the author to
install and run the Real Application Cluster support before the
deadline for submission of this paper, and it was not felt useful
to report the 'paper study' that had been completed. As more
and more sites seek to become at least more failure tolerant, if
not completely non-stop, it is expected that managing multiple
instance Oracle will become a major growth area and the
author hopes to extend this paper to cover the topic.

Backup and recovery are not discussed for a number of
reasons, not the least being that the paper is based solely on
experimental use of the software and the author believes that
testing in a near production environment is essential to valid
commentary on data security issues. It is also becoming clear
that as the number of features in the Oracle dataserver
continues to increase with every release, even server specialists
are starting to have some difficulty keeping fully up to date in
every area. The author's key focus in undertaking the technical
studies on which this paper is based was to look at new
manageability features primarily from a performance and
availability standpoint.

Test Environment
All of the testing for this paper was performed on the author's
laptop, a Compaq Armada M700 with 448 Mb of memory and
a single 20 Gb hard disk partitioned into a FAT device for the
operating system and an NTFS device for both the Oracle
installation and the database files. The single processor is a
Pentium III with a reputed clock speed of 833MHz; it certainly
executed queries from the Oracle9i cache at impressive speed.

Test Environment 107

108 Oracle Space Management Handbook

The machine was running Microsoft Windows/2000
Professional with Service Pack 2, and Oracle9i Enterprise
Edition release 9.0.1.0.1 with Oracle's pre-packaged "general
purpose" database although this was customized in a number
of ways. Most importantly the INDX tablespace was removed,
the USERS tablespace was expanded to 2 Gb, and limits were
set on datafile autoextension in each tablespace. It was noted
with some disappointment that the default databases all came
with a database block size of 4096 whereas the author would
have preferred to use 8192. This presented an opportunity to
test operation with multiple block sizes but these tests were not
completed in time to be included in this paper. It is hoped to
make a brief comment on the results during the conference
presentation.

Self-Management
Goals
We're all busy, and Database Administrators (DBAs) are often
busier than most. It makes huge sense that if the dataserver is
completely capable of taking whatever action is required, then it
should do so without waiting for a DBA to come along and
give it permission. On the other hand, customers are not
impressed when a dumb machine keeps making things worse
by applying inadequate management rules, especially if these are
enabled by default as always seems to be the case in some
personal productivity software.

At is simplest, therefore, we can establish two goals for self-
management features:

If the server can successfully manage the situation, then it
should do so.
If success is in doubt, then management should be left to
"someone you can fire."

Examples
In the world at large, automobiles contain a number of features
that are essentially self-managing including anti-lock brakes and
automatic transmission. In general, a skilled enough driver can
get better performance from the vehicle without these systems,
but most of us have better things to do and opt for the
increased safety and ease of use of the self-managed systems
rather than insisting on exercising the maximum level of
control.

Self-management features are not new in Oracle. Version 6 was
the first version with a region called the shared pool, but it also
had a discrete data dictionary cache divided up into separate
sections for tables, objects, indexes, columns, and so on. Each
of these regions had to be sized using its own init.ora parameter
and the penalty for making any one of them too small was a
significant increase in parse times. Pretty soon Oracle worked
out that most customers were failing to size these regions
accurately and decided that the dataserver should size the cache
dynamically from the memory allocated to the shared pool. In
the case of the row cache (Oracle's slightly bizarre internal
name for the data dictionary cache) the user no longer has to
do anything at all. It sizes itself. (If you are interested and want
to see how many failure-prone decisions this is saving you, take
a look at v$rowcache.)

Self-Management 109

110 Oracle Space Management Handbook

When it comes to the log checkpoint interval we have a trade
off. A longer gap between checkpoints means a higher
maximum possible transaction throughput, but also increases
the average and maximum instance recovery times. In Version
6, the DBA was expected to adjust checkpointing by reference
to the number of redo log blocks that had to be written before
a checkpoint took place; not surprisingly, many DBAs found it
difficult to relate this integer to the mean or maximum recovery
times. Subsequent releases have made the specification
progressively easier, and in Oracle9i, the DBA simply specifies
the desired mean time to recover (in seconds). The
administrator specifies the goal, and the server does whatever it
believes needs to be done to meet that goal.

Instance Parameter Management
Each of the recent versions of Oracle has had between 100 and
300 run-time parameters that can be specified at startup and tell
the instance "whether it is a prune Danish or a fruit cake". My
copy of Oracle9i has 250 of these parameters that I am allowed
to set (even if I am discouraged from doing so) and an
additional 432 parameters whose names start with an
underscore, which I am not supposed to change unless told to
do so by Oracle Support. _allow_read_only_corruption = true is
just one example.

Over the years it has become less and less acceptable to stop
database servers to adjust instance parameters, and Oracle has
made many of the parameters 'dynamic' meaning that a suitably
authenticated user can modify the value of the while the
database is running. Until Oracle9i these dynamic changes were
lost when the instance was stopped and restarted because at
restart the parameters were read from a text file invariably

referred to by its original default name init.ora although it
should really be known as a pfile.

Oracle9i can use an alternative type of parameter file called an
spfile, the key difference being that the new file type is
maintained from within Oracle. Thus the SQL statement alter
system set db_cache_advice = on scope = BOTH; enables the
cache advice feature within the current instance, and also
specifies that it will be enabled on subsequent restarts. The
scope argument may have the values MEMORY, SPFILE, or
BOTH.

Better still, the manuals tell us that even more of the
parameters are now dynamic, including those that set the size
of the shared pool and the various buffer pools (in order to
support multiple database block sizes, Oracle9i allows one
buffer pool per block size plus default, keep, and recycle pools
for the default block size). The manuals also state that even the
parameters that cannot be changed dynamically can be altered
using alter system set commands with scope -= spfile.
Unfortunately the reality is less encouraging. The total amount
of memory allocated to the SGA cannot be changed and so in
order to increase one allocation, another allocation must be
first reduced. Also a number of important memory regions
(including the java pool size and redo log buffer) cannot
currently be resized.

Worse, there are severe implementation problems. It does not
appear to be possible to change static parameters as advertised
in the manuals as can be seen from the following transcript
from SQL*Plus:

Instance Parameter Management 111

112 Oracle Space Management Handbook

alter system set java_pool_size = 30M scope = SPFILE
 *
ERROR at line 1:
ORA-02095: specified initialization parameter cannot be modified

Finally (at least under Windows/2000) any attempt to resize a
buffer pool with the db_cache_advice feature enabled causes the
instance to crash, leaving an ORA-00600 in the alert log. The
cache advice feature, discussed below, is strongly
recommended, but however attractive the idea of the spfile
seems from the documentation, it clearly needs to be deployed
with extreme care (if at all) in the current release.

Self-Tuning Memory Management
Oracle9i has two major features that can be used to help
overcome the memory conundrum discussed below. The first is
completely automatic and simply strives to keep memory usage
below a specified level. The second gathers and presents data
on the likely effect of changing the size of a buffer cache,
allowing the DBA to determine whether or not cache sizes are
appropriately set and facilitating tradeoffs between the buffer
pools and the shared pool or PGA space.

Memory Made Simple
Effective use of memory is key to Oracle performance.
Memory access is several orders of magnitude faster than disk
access, and most high-performance Oracle applications are
inherently more limited by their I/O capacity than by their
CPU capacity. Many technical authors and DBA's conclude
from this that the more they keep in memory the faster their
applications will run, but unfortunately life is not quite that
simple.

Firstly there is little point in keeping something in memory if it
is not going to be used again before it eventually gets
overwritten. Secondly Oracle is often (usually?) run using
'dedicated servers' in which case each Oracle session has its
own operating system thread or process with a private and
potentially large memory region called the PGA (Program
Global Area). As the number of sessions increases so does the
amount of PGA space required and eventually the operating
system has to resort to paging in order to meet the demand.
This can, of course, happen with only one Oracle session if
either the buffer cache or the shared pool is set pathologically
large, or the platform simply does not have enough memory to
run the Oracle version effectively.

Once demand paging becomes a significant factor, much of the
data that appears to be in memory has to be managed on disk
by the operating system and this defeats the original purpose of
allocating large memory work areas. The goal, therefore, is to
keep the memory areas at a size that minimizes I/O by
retaining frequently used items without causing excessive
paging. The difficulties are that it is not usually clear how a
change in cache size will affect I/O, and the number of
sessions may vary over time making it difficult to decide how
much memory the DBA can afford to allocate per session. The
parameter sort_area_size is a particular challenge in this regard
because large sort work areas can dramatically improve the
performance of certain operations (typically index creation,
derivation of object statistics and reporting) but they are
normally unnecessary and costly for most users.

PGA Aggregate Target
Traditionally Oracle has supported has series of instance
parameters such as bitmap_merge_area_size, open_cursors,

PGA Aggregate Target 113

114 Oracle Space Management Handbook

open_links, and sort_work_area that together determine the size
of the PGA. However whereas the value of a parameter such as
open_cursors makes only a small difference to the overall memory
charge, changing sort_work_area from 65536 to 1048576 could
under the worst circumstances alter the total memory charge by
over 4 Gb in a 5,000 user system.

The new instance parameter pga_aggregate_target does pretty
much what it name suggests - it instructs Oracle to try to keep
the total space used by PGA's within the instance below the
target value. It cannot guarantee to achieve this 100% of the
time for reasons that are covered in the Oracle documentation,
but it does offer the DBA the opportunity to make the size of
bitmap merge and sort areas vary with the number of
simultaneous users that need to use such an area. Unfortunately
it was not possible to test either the performance or the
overhead of this feature in the short time between the Oracle9i
production software becoming available to the author and the
deadline for the submission of conference paper. It looks like a
potentially valuable and completely automatic feature that will
really help sites where the number of sessions is subject to great
variation. However it should be noted that current best practice
in the architecture of 3-tier applications does not give rise to
such variations, preferring to use a constant size pool of server
sessions. To give the final word on this topic to the Oracle9i
Performance Guide and Reference "Oracle Corporation
strongly recommends switching to the automatic memory
management mode, because it is easier to manage and often
outperforms a manually-tuned system."

Cache Advice
As already hinted, part of the mythology of Oracle
performance tuning is the idea that the larger the buffer pool,
the better performance Oracle will give. Before Oracle Version
8.0 large buffer pools dramatically increased the CPU power
needed for a given workload, but this is fortunately no longer
the case. However as already discussed it is still desirable to
keep the buffer pools only just large enough in order to make
memory available for other regions, in particular the shared
pool and the session work areas (the PGA or, in a shared server
environment, the UGA).

For many years Oracle had a pair of linked features, one of
which that tracked the effectiveness of the buffer pool and the
other that tracked the predicted effectiveness of proposed
cache extensions. Unfortunately not only were these features
awkward to interpret, they incurred an unacceptable CPU load.
These discredited features have been replaced in Oracle9i by a
so-called cache advice mechanism; this does not quite live up to
the promise of its name, but it is nonetheless worth exploring.

There is a new instance parameter db_cache_advice that may be
set to on, ready or off. The default is off but the
documentation suggests that the trick is to set it ready because
setting it from off to on requires a memory allocation that may
fail. Once the feature is enabled the performance of each buffer
pool is tracked to determine how effective it is being at
reducing physical reads; the results are available from the virtual
view v$db_cache_advice. The Oracle9i Reference contains the
warning that "CPU and memory overheads are incurred" but in
a quite punitive test the author found that the CPU overhead
was consistently less than 10%. This seems a reasonable cost to
incur from time to time for the benefit of being able to

Cache Advice 115

116 Oracle Space Management Handbook

correctly size the buffer caches. The view v$db_cache_advice
shows, for each buffer cache, a series of statistics on the
estimated number of physical reads that would have taken place
if the buffer cache had been that size over the period since
either startup or when the feature was enabled. Sample output
from a reporting script is shown below.

Cache Cache Total Est Read Est Phys
Name in Mb Buffers Factor Reads
---------- ------- ------- -------- ----------
DEFAULT 6.14 1,572 1.19 18,560
DEFAULT 12.28 3,144 1.11 17,418
DEFAULT 18.42 4,716 1.01 15,783
DEFAULT 24.56 6,288 1.00 15,658
DEFAULT 30.70 7,860 1.00 15,658
DEFAULT 36.84 9,432 1.00 15,638
DEFAULT 42.98 11,004 1.00 15,596
DEFAULT 49.13 12,576 1.00 15,591
DEFAULT 55.27 14,148 1.00 15,589
DEFAULT 61.41 15,720 1.00 15,587

The default buffer cache was 20 Mb in this example, but when
the instance was started it had been 32 Mb and was reduced
using alter system before running with cache advice enabled.
Although the author has not found documentation to confirm
this, from observation the cache advice feature monitors the
predicted effect of buffer pools from about 20% to 200% of
the size of the pool at startup in steps of 10% of the original
size. The query that produced the example intentionally
removed every second step in order to present a shorter table.

Although the view does not actually project any advice as such,
two conclusions can quickly be drawn from the output in the
test case shown. If only 6 Mb of buffer space had been
allocated then physical reads would have increased by about
20%, whereas allocating more than 20 Mb of buffer space
would have hardly reduced physical reads at all. The estimate is
that the addition of the final 12 Mb would have reduced

physical reads by just 4, or about 0.025%. Had this sampling
interval been reasonably long and taken against the instance
under typical load then we would have proof that 20 Mb was
the correct buffer pool size for the service being delivered.

Data that demonstrates the ineffectiveness of enlarging the
buffer pools is invariably hotly disputed by part of the Oracle
community, but the mathematics has been known for many
years. Hopefully this new mechanism will gain both credibility
and use, and help Oracle DBA's to reach better compromises
in memory allocation.

Automatic Undo Management
Background
Other than the dreaded ORA-00600 the Oracle error that seem
to strike the greatest fear into the hearts of DBA's is ORA-
01555, the "snapshot too old" error (though to be fair ORA-
03113 is another one that you really do not want to be faced
with). Snapshot too old means simply that the read consistency
mechanism has tried to reach too far back in time.

There are two reasons why a read consistency operation may
need to be performed. Firstly a transaction may try to look at
data that is subject to another user's uncommitted changes. If
Oracle is working properly then this read consistent operation
is guaranteed to succeed because Oracle is required to be able
to rollback or undo a transaction at any time until it is
committed.

Each query has a read consistency point, and all of the data
returned by the query must be the committed state of the data
as of that point in time. Normally the read consistency point is

Automatic Undo Management 117

118 Oracle Space Management Handbook

established by executing the query, but it can also be
established for a whole series of queries by starting a "read only
transaction". The ability to reconstitute the data as it appeared
before a committed change is not guaranteed; in most
applications it works without problems for most of the time
but from time to time users experience the "snapshot too old"
problem.

Rollback Segments
Each time Oracle makes a change to schema data it records the
information required to undo that change in a special type of
database area called a rollback segment. This information is
always kept at least until the transaction making the change has
committed, but as soon as the transaction is complete its
rollback or undo data can be overwritten. How soon this
happens depends on how much undo space is available and
how quickly current and future transactions create new undo
records. Within a few seconds, or minutes, or hours the undo
information will be overwritten or, in some cases, simply
discarded.

Since the introduction of Oracle Version 6 in 1988 the
allocation of rollback segment space has been a major concern
for Oracle DBA's who have had to decide both how many
rollback segments an instance should have and how large each
one should be. Resolving this issue has typically required a
number of compromises that are outside the scope of this
paper.

The Oracle9i Solution
Oracle9i supports the traditional rollback segment management
features that have evolved over the past 13 years, but also
introduces Automatic Undo Management. In this mode the
DBA only has to create an "undo tablespace", tell Oracle to use
this tablespace, and specify for how many seconds each undo
record must be retained. The records will, of course, be kept
for longer if the transaction that creates them does not commit
within the time interval.

In Oracle9i the following three instance parameters will
guarantee that all undo entries will remain available for 15
minutes:

undo_management = AUTO
undo_retention = 900 # seconds
undo_tablespace = UNDOTBS

However a potentially unwanted side effect is that the Oracle
server will not retain the data for much longer than the time
specified even if the instance is running with a relatively light
updating load i.e. even if there is no great demand to write new
undo information. This contrasts markedly with traditional
rollback segment management, where under light updating
loads undo entries could (and would) remain available for
several hours to generate read consistent data sometimes
required by long running reports. Fortunately the instance
parameter undo_retention can be altered dynamically using alter
system set and this may become necessary at sites which have
long report runs take place and cannot completely prevent
update from occurring while these reports are running.

Automatic undo management looks like a winner despite the
likelihood that many sites will find it necessary, or at the very

The Oracle9i Solution 119

120 Oracle Space Management Handbook

least desirable, to alter the retention period dynamically. The
parameter is specified in terms of time rather than the present
specification in blocks, which requires the DBA to assess how
much undo his instance generates per second and to hope that
this remains approximately constant.

Database Resource Manager
Database resource management is present in Oracle8i, though
as far as the author can discover the customer base has not
used it extensively. Changes to the way in which Oracle
manages user session processes (threads under Windows/NT
and Windows/2000) have resulted in a number of changes
under the covers but the basic functionality remains the same,
and contrasts markedly with the user profiles feature.

Profiles, when enabled, set hard limits on the amount of
resource that a session may use and may also be used to limit to
number of sessions that a given user ID may start in parallel.
Both CPU and logical reads (database block visits) can be
rationed at either or both session level and call level. Thus a
profile might limit a particular user to never exceeding 60
seconds CPU time in any call to the database. Profiles also have
a role in password management, but this is outside the scope of
this paper. The major problem with hard limits on block visits
and CPU consumption is that such resource usage does little or
no harm if other users of the server are getting the resource
that they require.

In its simplest usage the Database Resource Manager seeks to
control the share of the CPU resource allocated to specific
groups of sessions rather than the total amount of resource
consumed by those sessions, and to intervene only when some

group is in danger of not receiving their allocated percentage.
However there are a number of other features including
rationing the number of sessions that a specific group may start
and applying execution time limits to database calls. These time
limits are significantly different from the limits applied by
profiles because the operation is aborted when Oracle predicts
that it will overrun its limit rather than waiting for the limit to
be exceeded.

Database Resource plans can quickly become extremely
complex, with sessions being migrated from one resource
group to another as they consume increasing amounts of
resource. However in limited testing by the author, operating a
simple resource plan appear to use remarkably little resource
and it did prevent long-running queries from monopolizing the
CPU. In view of the extreme problems associated with trying
to prioritize Oracle users through operating system scheduling
features the database resource manager looks to be a valuable
feature for sites that area likely to experience CPU resource
conflicts. The other side of the coin is that under heavy load
many Oracle instance bottleneck on I/O resource rather than
CPU, resource plans can only tackle this indirectly.

Unused Index Identification
Indexes consume disk space and lengthen backup and restore
operations; in addition index maintenance during insert, update
and delete operations is a major CPU and I/O overhead in
many Oracle applications. There is therefore a clear incentive
for the identification and removal of both unused indexes and
those indexes which are either little used or make no
contribution to application performance. Having spent much
of the past year working in this area under Oracle8i the author
was fascinated to discover that Oracle9i contained a feature

Unused Index Identification 121

122 Oracle Space Management Handbook

specifically designed to identify unused indexes. The new
syntax alter index <index_name> monitoring usage;
creates a row for the index in the view v$object_usage. This view
contains a column USED that is set to YES when the parser
first includes the index in an execution plan.

No indication is given of how often the index is used or
whether or not its use was beneficial from a performance
viewpoint. More worrying, the author's initial tests indicated
that the column could be set to YES even if the index had not
been used. This result is so bizarre that the author is seeking
independent confirmation of it and intends report further
during his conference presentation. It is as yet unclear whether
the feature is intended to report index usage that does not
appear in the execution plan.

For sites at which parsed SQL statements remain in the shared
pool for a reasonable amount of time even if only executed
once (usually the case for application that make effective use of
bind variables) the simple query

select INDEX_NAME
 from USER_INDEXES
 minus
select OBJECT_NAME
 from V$SQL_PLAN
 where OBJECT_OWNER = USER;

will identify indexes that have not been used by any statement
currently in the shared pool. This has proved reasonably
effective at detecting unused indexes though it is known to
miss indexes that are used solely for constraint enforcement.
v$sql_plan is another new and extremely welcome feature in
Oracle9i. We always knew that the execution plans must be in

the shared pool, and now we can report them with almost
trivial SQL queries.

Oracle Managed Files
Oracle stores its data, including its log files and control files, in
storage domains managed by the underlying operating system
and relies on operating system services (albeit at a fairly low
level) to handle data transfers between memory and disk.
Although raw devices may need to be configured under some
circumstances, the data is normally contained within a file
system and each file is referenced by both a path and a name.
Thus on my laptop the SYSTEM tablespace is stored within
the single operating system file
D:\ORACLE\ORADATA\DAE901\SYSTEM01.DBF. It
should be no surprise on a small "server" such as my laptop
that the files used to hold tablespace data for that particular
database all share the same path, in this case
D:\ORACLE\ORADATA\DAE901 (the database and the
database instance are both called DAE901 after my initials and
the Oracle version number).

Oracle Managed Files allow an administrator to specify a
default path or location for database files, and this means in
turn that operations that previously required the user to
provide a file path and name can now be carried out with
Oracle providing a default file. Thus (with suitable privilege)
the two SQL*Plus commands:

SQL> alter system set db_create_file_dest = 'D:\TEMP';
System altered.
SQL> create tablespace XXX;
Tablespace created.

result in the creation of the file
D:\TEMP\ORA_XXX_ZY2TFB00.DBF which will be used

Oracle Managed Files 123

124 Oracle Space Management Handbook

to hold all of the data stored in that tablespace. This file has
been created with the default size of 100 Mb and with
autoextend on, but both of these attributes could have been
overridden in the create statement without having to specify a
file name. If the tablespace were now to be dropped using the
SQL*Plus command

SQL> drop tablespace xxx including contents;

Tablespace dropped.

then not only would storage segments (such as tables) in that
tablespace be dropped, and the tablespace removed from the
data dictionary, but Oracle would also delete the operating
system file that it created during the create tablespace
operation. The ability to create the required files by default is
also supported in the create database command.

Such functionality may not be of immediate use to many
Oracle DBA's who are well-used to allocating file space for
Oracle's "container files" and who also expect to have to take
decisions on where in the file system such data should be
located for capacity and load balancing. However for a group
trying to write install and maintenance procedures for an
Oracle database that is to run on many machines whose device
configuration is unknown in advance, the facility to allow
Oracle to name the files means one less important error-prone
step to be carried out by the installer.

Oracle Managed Files may be a minor misnomer as for all
normal operating purposes Oracle "manages" the file in the
same way as any other database file, but the functionality will
be very helpful to a number of third party software suppliers.

Conclusions
From initial experience of the self-management features
discussed in this paper, the early winners are the facility to
allow Oracle to determine how much memory to allocate to
individual sessions and the ability to set CPU time allocation
targets for groups of users. In addition automatic undo
management and Oracle managed files both look promising
but are perhaps more likely to be adopted for new databases
than as part of an upgrade strategy as the problems that they
solve should already have been overcome in any pre-existing
production application.

The ability to have Oracle report unused indexes looked
attractive at first sight but was not found to be useful in
practice. The spfile mechanism, which is provided to allow
administrators to make persistent changes to instance
parameters through the alter system command, should be
extremely attractive. Unfortunately in the first production
release of Oracle9i the feature has a number of failings and
should be used. The associated ability to dynamically resize
Oracle's caches is useful, but somewhat incomplete. It does not
support all of the caches, and also it does not allow increase of
the total amount of memory allocated to the caches.

Conclusions 125

126 Oracle Space Management Handbook

Internals of Locally-
Managed Tablespaces

CHAPTER

13
Locally Managed Tablespaces

Locally managed tablespaces were introduced in Oracle 8i, and
have slowly been gaining popularity. However, the take-up is
still a little slow. This article describes what are locally managed
tablespaces, why they are good, and offers strategies for using
them.

Tablespaces Past and Present
A tablespace is a logical unit of storage. It can span many data
files, and contain many data segments. The available space in a
tablespace is broken up into extents, and each data segment is
made up of one or more extents, in which an extent is simply a
contiguous section of a single data file. Typically, a data
segment corresponds to a self-contained and cohesive
collection of data (such as a table, or an index partition) that
has some meaning to an end user.

This outline of a tablespace immediately introduces two space
management issues. First, which extents belong to which
segment; secondly, which extents are in use and which are
available. The methods of addressing the first issue have not
changed (much) in recent years, but Oracle Corp. has
introduced locally managed tablespaces (LMTs) to address
problems associated with the second issue.

The Past
Historically, space management in a tablespace was handled
through a couple of tables, uet$ (used extent table) and fet$ (free
extent table).

When you needed to allocate some space to a segment, Oracle
would search fet$ for an entry describing an extent of an
appropriate size in the correct tablespace. In fact, there were a
number of complicated little strategies that Oracle used in this
search that could take some time to complete — but
eventually, Oracle would delete (or modify) a row in fet$ and
insert a row into uet$.

Similarly, when you freed up an extent (by dropping a table,
say) Oracle would delete a row from uet$ and perform a row-
insert or modification on fet$.

In fact, the entire process could also require some changes to
be made to a row in seg$ (the table describing data segments)
and tsq$ (the table describing space quotas that had been
allowed to users). Moreover when you added an extent to a
segment, a map in the segment's first block (the segment
header block) had to be updated to record the fact that the
extent was part of the segment.

So, all the work regarding space management for all the
tablespaces in the entire database focused on two critical tables
in the data dictionary (hence, dictionary managed tablespaces or
DMTs.) Unless the DBA really knew what was going on and
was totally in control of the system, this could cause problems.
There were three main reasons why problems could appear.

The Past 127

128 Oracle Space Management Handbook

First, Oracle Corp. had decided to protect all space
management operations under a single space transaction
enqueue ("ST" lock), rather than one lock per tablespace. So
if a number of jobs were making heavy demands for space
management, they could easily end up queueing up for the
lock and wasting processing time.

Secondly, Oracle Corp. effectively encouraged DBAs to
generate a demand for space management tasks by
introducing various segment-level storage parameters (such
as initial, next, pctincrease) that promised a spurious degree
of precision in storage requirements but defaulted to values
that guaranteed that space management would be poor.

Finally, there was enough ignorance and uncertainty in the
marketplace that it was easy for junior DBAs to follow
procedures that more or less guaranteed that if something
could go wrong, it would go wrong. All the problems
relating to DMTs can be avoided — so long as someone
gives you enough time to find out how they really work (and
does the modern DBA ever get the time they need?).

The Present
An LMT is responsible for its own space management. In a
clean system, every file in a tablespace is sliced into equally-
sized chunks (with the exception of the first 64K of the file,
which is used to store a bitmap identifying which of the other
chunks are currently in use). Each bit in the bitmap
corresponds to a chunk in file — if a bit is set, the chunk is in
use, and if a bit is clear, the chunk is free. Figure 1 shows a
schematic of a newly created tablespace containing a single file,
and the state of that file after some object creation and
dropping has occurred.

Figure 1: A Clean LMT (upper) and a partly used LMT (lower).

You can specify the size of the file, and the size of the chunks
to be used in the file. For example, consider the script:

create tablespace demo_01
datafile 'c:\oracle\oradata\D9202\demo_01.dbf'
size 102464k
extent management local
uniform size 1024K
;

This creates a tablespace with a single file (with a very fussy size
declaration), which is sliced up into exactly 100 chunks of
1024K, but has an extra 64K specified to cater for the file's
bitmap. If we query the dba_free_space view to find out about the
free space in this tablespace, we will find that Oracle reports
exactly 104,857,600 bytes. When we try to allocate an extent,
we will find that the extent will be exactly one chunk — under
uniform size management, one chunk equals one extent.

A common problem with LMTs is that DBAs declare the file
size without catering for the bitmap space; consequently they
"lose" most of an extent's worth of space at the end of the file
because the file is just 64K too small to create the last extent. If

The Present 129

130 Oracle Space Management Handbook

this happens to you, all you have to do is resize the file to add
the missing 64K, and you may suddenly discover a whole extra
extent appearing in dba_free_space.

Note: there is an autoallocate option for LMTs that can be used
instead of uniform size X. This still slices the file up into
uniform chunks (in this case, always at 64K), and uses one bit
per chunk. However, instead of equating one chunk with one
extent, Oracle will consider past history and available gaps to
decide what size extent to allocate. The extent will be one of a
limited set of sizes — 64K, 1MB, 8MB, 64MB, or 256MB. For
relatively small, simple systems in which there isn't much
information available about proper sizing requirements, this
can be a minimum fuss mechanism to adopt; but in general,
you should stick with uniform sizing.

So what difference do locally managed tablespaces make? Most
significantly, whenever you allocate space in an LMT, Oracle
does not have to search through a table to find a row that
describes a suitable chunk; instead, it just scans the first few
blocks of the file looking for the first free bit, and sets it. This
is a much more efficient method of finding and allocating
space, and has the pleasant side-effect that free space near the
start of the file will be preferentially allocated — which may
help to keep file sizes small, and eliminate redundant effort in
rman backups.

Of course, Oracle still has to worry about the seg$ table and the
segment header block, and may still have to update the tsq$
table, but the most labor-intensive part of the operation
becomes a lot more efficient. Moreover, instead of using a
single space transaction (ST) enqueue to cover the entire
database, Oracle uses a new enqueue type — the TT enqueue

— and allows one TT enqueue per tablespace to reduce
problems of contention due to simultaneous space transactions.

There are trade-offs. It is now much quicker and cheaper to
allocate and de-allocate space, but some of the classic reports
for summarizing free space or used space just got more
expensive. Instead of querying a single table (fet$ and uet$
respectively) you now have to visit every file header to get a
summary of free space, and every segment header to get a
summary of used space. However, performance is not really the
issue, and such reports need not be run frequently (I hope).

Where Are the Benefits?
There are always three areas in which a new feature might be of
benefit: (a) strategic direction, (b) performance and (c)
administrative ease. I shall address each topic in turn.

Strategically, you should be moving your systems to LMTs.
Under Oracle 9.2, the database creation assistant will by default
create your database with the system tablespace declared as an
LMT. If the system tablespace is an LMT, you will not be able
to create any DMTs in the database. Clearly, Oracle Corp.
expects everyone to migrate to LMTs in the near future —
quite possibly, DMTs will cease to exist in Oracle 10 — so it
would be a smart move to get the migration over and done
with before the next version of Oracle arrives. By the way, even
if system is an LMT, you will still be able to use the
transportable tablespace mechanism to attach a DMT to the
database, but that tablespace will have to remain read-only.

As far as LMTs are concerned, performance is pretty much a
non-issue. Although the 'amazing' performance benefit of the
bitmap management seems to be a commonly touted reason

Where Are the Benefits? 131

132 Oracle Space Management Handbook

for switching from DMTs to LMTs, it only takes a couple of
minutes thought about when, where, and how often you get
this benefit to make you realise that it is pretty irrelevant. Just
ask yourself — how often should you be allocating and de-
allocating space? The correct answer is — hardly ever.
Consider the commonest occasions:

You have allocated a permanent tablespace instead of any
form of temporary tablespace as the users'
temporary_tablespace (an option that is blocked in V9 with
error ORA-12911: permanent tablespace cannot be
temporary tablespace). Consequently, all sorting, hashing,
temporary LOBs and temporary tables get dumped into
permanent data segments instead of using the sort extent
pool. This could result in a performance problem that could
be reduced somewhat by using LMTs, but this isn't an
LMT/DMT issue, it is a temporary/permanent issue.
You have allocated a tablespace of contents type temporary
for the users' temporary_tablespace, but the extent size you
have allocated is extremely small and some sort operations
push the extent demand up to tens of thousands, or even
hundreds of thousands, of extents. The next time you
restart the database, smon runs at 100 percent CPU for ages
with a serious blocking effect on most database activity.
This could result in a performance hit that could be reduced
dramatically by using LMTs, but this is generally an
administrative error, not an inherent performance issue.
Admittedly, a user's temporary tablespace has to cope with
temporary Lobs, temporary tables, sorting and hashing, and
these uses may not be compatible. Consequently you may
make a deliberate decision to accept this issue — in which
case, you definitely do need LMTs for your temporary
tablespaces.

You have created several important, high-volume data
objects with a small initial and next extent, and a pctincrease
of one (following a well-known and frequently quoted piece
of misdirection). Consequently, you have many objects that
keep allocating extents because each extent request is for a
small extent that is soon filled. Moreover, each request is for
an odd-sized extent, and therefore typically requires close to
maximum work before Oracle decides how to allocate it.
This could result in a performance hit that could be reduced
significantly by using LMTs, but it is an administrative error,
not an inherent performance issue.
Your application frequently creates and drops tables on the
fly to store transient results. This results in high-stress
activity on the space management system. This strategy
probably will result in a performance hit, but it is a design
error, not an inherent performance error. However, for
third-party applications in which you can't get the error
corrected, this is the one case when the normally marginal
performance benefit of LMTs could be a necessary and
important damage-limitation exercise (in the short term).

All the above "performance threats" can be avoided, or
minimized, without resorting to LMTs, and many DBAs have
been taking the necessary steps to avoid them for many years.
There is a well-known paper on the topic available through
Metalink or OTN ("How to Stop Defragmenting and Start
Living"), but in short:

Don't use storage clauses with objects; always use tablespace
defaults.
Set pctincrease = 0 as the tablespace default.
Set initial = next as the tablespace default.

Where Are the Benefits? 133

134 Oracle Space Management Handbook

Set the minimum extent clause on tablespaces, to match the
initial/next.
Put objects in tablespaces that are appropriate for the
expected object size.
Don't export with compress = y if you plan to recreate
tables from an import.
Make sure you understand the requirements for temporary
space, and declare and allocate (multiple) temporary
tablespaces accordingly
Avoid using permanent tables for transient data - look at
global temporary tables

So finally, we come to the administrative benefits. Why do
LMTs help DBAs keep control of their databases? Essentially,
the answer comes back to the paper on defragmenting — the
advice it gives is good, and if you switch to uniform-size LMTs,
the advice it gives is effectively imposed and enforced at the
database level.

If you examine the list above, steps 2, 3, and 4 are covered
automatically and unbreakably when you create your
tablespaces as locally managed with uniform size — every
extent in a tablespace will be the same size. Also, steps 1 and 6
become pretty irrelevant: whatever accidents you have on
creating or importing objects with unsuitable storage clauses,
Oracle complies with the spirit of the request, but ignores the
details of the request by allocating extents according to the
tablespace definition. Consequently, much of the strategy that
good DBAs have struggled to enforce for many years happens
by default with LMTs. And the key word is "struggled."
Despite the best efforts of DBAs, it was still possible for things
to go wrong with DMTs — with uniform sized LMTs, every

extent is forced to be the same size, and no one can break the
pattern.

But why is it so convenient to force every extent in the
tablespace to be the same size? (And at this point, you may
appreciate my earlier comment about avoiding autoallocate
LMTs, which allow for half a dozen sizes of extents.) The
reasons are, first, ease of monitoring space; secondly,
convenience of data packing, and third, reliability of object
rebuilds.

Do you have a complicated little script for working out
whether or not the next extent for any object in the database
will be able to find a large enough space in the right tablespace?
If you use uniform LMTs, then this script simplifies to, "Is
there any freespace in the tablespace; if so, then it is usable."
You could even go so far as to base your reports on a couple of
very simple queries:

Rem
Rem Find out how many objects per tablespace
Rem Find the unit size for each LMT
Rem Find out the free space per tablespace
Rem
select tablespace_name, initial_extent
from user_tablespaces
where extent_management = 'LOCAL'
and allocation_type = 'UNIFORM'
-- you might include 'SYSTEM'
;
select tablespace_name, count(*)
from dba_segments
group by tablespace_name
;
select tablespace_name, sum(bytes)
from dba_free_space
group by tablespace_name
;

By making [some localized variant of] these three queries into
/*+ no_merge */ in-line views and joining them with a suitable
outer join, you could, for example, produce a report showing

Where Are the Benefits? 135

136 Oracle Space Management Handbook

how many data segments you have per tablespace, and how
many of them could extend simultaneously without causing a
problem.

Similarly, you could start with a simple query such as:

select
 tablespace_name, segment_name, partition_name, extents
from dba_segments

You could then combine this with the first of the three queries
given previously to capture a daily, or weekly, list showing
number of extents per object. This gives you the option for
producing a "diff" report of segment growth that can be used
to predict future space requirements. Once you have a
mechanism that allows you to equate number of extents with
size of object, it is so much easier to recognize patterns.

The goal, then, is to ensure that you pick uniform sizes that
make it possible to produce warning reports and predictive
reports that are useful. And a key feature of usefulness means
they should appear only when they have something important
to say, and then don't hide it away under a huge volume of
trivia and irrelevancy.

The guidelines in the article on defragmentation are good ones
to apply to LMTs. Identify objects by such attributes as
application, style of use, function, and so on, and finally by size.
Typically, you might choose three or four representative sizes
for your objects — such as "small," "medium," "large," and
"enormous" — and then define tablespaces to match each of
these sizes. (I tend to work in multiples of 8 or 16, so for a set
of four sizes, and might set up tablespace with uniform sizes of
64K, 512K, 4MB, 16MB). You then allocate objects to

tablespace on the basis that fairly static objects should have
perhaps 1 to 16 extents, whereas regularly growing objects
should add one extent every couple of months. The net effect
of this strategy is that you tend to size your database suitably,
and don't get any nasty surprises as the data grows.

Of course, mistakes do happen, and your first estimates may
put an object in the wrong size of tablespace. It's quite easy to
move objects from one tablespace to another — and when you
do so, you won't have any problems fitting an object into a
tablespace. If there is enough space for an object in a
tablespace, then all that space will be usable. Remember the
bad old days when you could have 100MB of free space in a
tablespace, but be unable to import a 51MB table because the
100MB was made up to two disjoin holes of 50MB each? This
simply doesn't happen with LMTs. All holes are the same size,
and every object is automatically created as a series of chunks
that exactly match the holes. When you move a 24MB table
from the "64MB tablespace" to the "1MB tablespace," it
doesn't need (and can't have) a single 64MB extent; it
automatically arrives as 24 extents of 1MB.

For data warehouse users, the convenience and reliability of
space usage also makes it easier to develop a strategy of moving
and packing data just before making it read only. (And Oracle
9.2 offers a tremendous added advantage for read-only table
data with the compress option for data.) Just before you make a
data set (for example, the partitions for last month) read only,
you can move and compress the data, rebuild the indexes and
trim the containing files to the minimum possible size. And you
can do this with a level of convenience and confidence that was
not possible with DMTs.

Where Are the Benefits? 137

138 Oracle Space Management Handbook

In fact, you could choose to move the objects into tablespaces
of the 'wrong' uniform size since there may be an optimum
extent count that is a better match for your use of multiple
devices, multiple files and parallel execution. The options for
proactive space management and performance enhancement
through space management become quite interesting when you
switch to LMTs.

Conclusion
So what do we really get from LMTs?

The solution to one special issue that Oracle forces on us
because all the function of temporary storage is met by a
single tablespace per user.
Help with avoiding a couple of administrative errors.
Some important assistance in space monitoring and
management.

Should we use LMTs? Absolutely — anything that helps you to
eliminate complexity and risk of error, especially in mundane,
but time-consuming tasks, is a good thing. And especially if
using them introduces a couple of performance-related
benefits.

Multiple Block Sizes
in Oracle9i

CHAPTER

14
Using Multiple Block Sizes in Oracle9i

The introduction of Oracle9i brought an amazing amount of
complexity to the Oracle database engine. Oracle introduced
many new internal features, including bitmap free lists, redo log
based replication, dynamic SGA, and perhaps the most
important feature of all, the ability to support multiple block
sizes.

When you strip away all of the advanced features, Oracle's job
is to deliver data, and the management of disk I/O is a very
critical component and tuning of any Oracle database.
Anything that can be done to reduce the amount of disk I/O is
going to have a positive impact on the throughput of the
Oracle database system.

If we take a look at the various tuning activities within Oracle
database, will see that the common goal of almost Oracle
tuning has the directed and immediate goal of reducing disk
I/O. For example, tuning an SQL statement to remove a full
table scans makes the query run faster because of the direct
reduction in the amount of data blocks that are read from the
disk. Adjusting instance tuning parameters such as db_cache_size
also has the goal of reducing the amount of disk overhead.

To understand how using multiple block sizes can improve
performance of the Oracle database we first have to start by
taking a look at the basic nature of disk I/O. Anytime an

Using Multiple Block Sizes in Oracle9i 139

140 Oracle Space Management Handbook

Oracle data block is accessed from disk, we commonly see
three sources of delay. The first and most important source of
delay is the read-write head movement time. This is the time
required for the read-write head to position itself under the
appropriate cylinder. We also see rotational delay as the read-
write head waits for the desired block the past beneath it, and
the third source of delay is the data transmission time from the
disk back to the Oracle SGA.

If we accept the premise that 99 percent of the latency is
incurred prior to actually accessing the desired data block, then
it makes sense that the marginal cost for reading a 32K block is
not significantly greater than the cost of reading a 2K block. In
other words, the amount of disk delay is approximately the
same regardless of the size of the block. Therefore it should
follow that the larger the block that you can read in on a single
I/O, the less overall I/O will be performed on the Oracle
database.

The principal behind caching is not unique to Oracle databases.
Access for RAM is measured in nanoseconds, while access
from disk is generally measured in milliseconds. This amounts
to a to an order of magnitude improvement in performance if
we can get the Oracle data block into a RAM buffer. As Oracle
grows more sophisticated and RAM becomes cheaper, we tend
to see Oracle9i databases with system global areas (SGA) that
commonly exceed 10 GB. This has important ramifications for
the performance of the Oracle database because once read, the
Oracle data blocks reside in RAM where they can be accessed
tens of thousands of times faster than having to go to disk in
order to retrieve the data block.

RAM buffers and Oracle data access Oracle has always
provided RAM data buffers to hold incoming data blocks, and
data can be read from the buffers 14,000 times faster than
reading the data block from disk. The RAM data buffer has
evolved from a single buffer in Oracle7 to three data buffers in
Oracle8i. These were known as the KEEP pool, the
RECYCLE pool, and the DEFAULT pool (refer to figure 1).

Figure 1 - The Oracle8 data buffers

In Oracle9i we still have the three data buffers, but we also
have the ability to create a data buffer for every supported
blocksize for the Oracle server (refer to figure 2).

Using Multiple Block Sizes in Oracle9i 141

Figure 2 - The eight data buffers for Oracle9i

Within each data buffer, the data buffer hit ratio measures the
propensity of a data block to be in RAM memory. It is the job
of the Oracle administrator to allocate RAM pages among the
data buffers to ensure the optimal amount of RAM caching.
With small buffers, a marginal increase of pages results in
superior caching (refer to figure 3).

142 Oracle Space Management Handbook

Figure 3 - RAM pages added to a small data buffer

As the RAM cache is increased, the marginal benefit from
adding pages decreases (refer to figure 4).

Figure 4 - The marginal decrease of disk I/O with large data buffers

Using Multiple Block Sizes in Oracle9i 143

144 Oracle Space Management Handbook

Indexes and Large Data Blocks
Prior to Oracle9i, Oracle professionals noticed that by moving
the entire database to a larger block size, they reduce disk I/O
improve the performance of the entire system. This is
somewhat counterintuitive, and people ask "if I only need an
80-byte row, where do I get the benefit of reading 16K block?"

The answer has to do with indexes. Most well-tuned Oracle
database have index based roughly equal to the space of the
table data. There's no question of a large block size for indexes
is going to reduce I/O, and therefore improve the overall
performance of the entire database.

Hence, one of the first things the Oracle9i database
administrator will do is to create a 32K tablespace, a
corresponding 32K data buffer, and then migrate all of the
indexes in their system from their existing blocks into the 32K
tablespace. Upon having done this, the Oracle9i database can
read a significant amount of index note branches in a single
disk I/O, thereby reducing stress on the system and improving
overall performance.

Allocating Objects into Multiple Block Buffers
So given that we have the ability to create multiple data buffers
within the Oracle database, how do we decide what data that
we want to put each of these data buffers?

Let's start with some of the more common techniques.

Segregate large-table full-table scans - Tables that experience
large-table full-table scans will benefit from the largest

supported block size and should be placed in a tablespace with
your largest block size.

Set db_recycle_cache_size carefully - If you are not setting
db_cache_size to the largest supported block size for your server,
you should not use the db_recycle_cache_size parameter. Instead,
you will want to create a db_32k_cache_size (or whatever your
max is), and assign all tables that experience frequent large-
table full-table scans to the largest buffer cache in your
database.

The Data Dictionary uses the default cache - You should
ensure that the data dictionary (e.g. your SYSTEM tablespace)
is always fully cached in a data buffer pool. Remember, the
block size of the data dictionary is not as important as ensuring
that the data buffer associated with the SYSTEM tablespace
has enough RAM to fully-cache all data dictionary blocks.

Segregate Indexes - in many cases, Oracle SQL statements will
retrieve index information via an index range scan, scanning
the b-tree or bitmap index for ranges of values that match
the SQL search criteria. Hence, it is beneficial to have as
much of an index residing in RAM as possible. One of the
very first things the Oracle 9i database administrator should
do is to migrate all of their Oracle indexes into a large
blocksize tablespace. Indexes will always favor the largest
supported blocksize.

Segregate random access reads - For those databases that
fetch small rows randomly from the disk, the Oracle DBA
can segregate these types of tables into 2K Tablespaces. We
have to remember that while disk is becoming cheaper every
day, we still don't want to waste any available RAM by
reading in more information to RAM number actually going
be used by the query. Hence, many Oracle DBAs will use

Allocating Objects into Multiple Block Buffers 145

146 Oracle Space Management Handbook

small block size is in cases of tiny, random access record
retrieval.

Segregate LOB column tables - For those Oracle tables that
contain raw, long raw, or in-line LOBs, moving the table
rows to large block size will have an extremely beneficial
effect on disk I/O. Experienced DBAs will check
dba_tables.avg_row_len to make sure that the blocksize is larger
than the average size. Row chaining will be reduced while at
the same time the entire LOB can be read within a single
disk I/O, thereby avoiding the additional overhead of having
Oracle to go out of read multiple blocks.

Segregate large-table full-table scan rows - When the recycle
pool was first introduced in Oracle8i, the idea was the full
table scan data blocks, (which are not likely to be re-read by
other transactions), could be quickly flushed through the
Oracle SGA thereby reserving critical RAM for those data
blocks which are likely to be re-read by another transaction.
In Oracle9i, you can configure your recycle pool to use the a
smaller block size.

Check the average row length - The block size for a tables'
tablespace should always be greater than the average row
length for the table (dba_tables.avg_row_len). Not it is smaller
than the average row length, rows chaining occurs and
excessive disk I/O is incurred.

Use large blocks for data sorting - Your TEMP tablespace will
benefit from the largest supported blocksize. This allows
disk sorting to happen in large blocks with a minimum of
disk I/O.

Tools for Viewing Data Buffer Usage
The process of segregating Oracle objects into separate data
buffers is fairly straightforward and Oracle9i provides tools to
assist in this effort. Many Oracle administrators are not aware
of those table blocks which consume a disproportional amount
of data space within the data buffer caches, and Oracle9i
provides numerous scripts to allow you to see which objects
reside most frequently within the data cache.

The query below counts the number of blocks for all segments
that reside in the buffer cache at that point in time. Depending
on your buffer cache size, this could require a lot of sort space.

column object_name format a40
column number_of_blocks format 999,999,999,999
column object_name format a40
column number_of_blocks format 999,999,999,999

SELECT
 o.object_name,
 COUNT(1) number_of_blocks
FROM
 DBA_OBJECTS o,
 V$BH bh
WHERE
 o.object_id = bh.objd
AND
 o.owner != 'SYS'
GROUP BY
 o.object_name
ORDER BY
 count(1) desc;

Here we see the object name and the number of data blocks in
the buffer.

OBJECT_NAME NUMBER_OF_BLOCKS
-- ----------------
ORDER_TABLE 123,273
ORDER_IDX 112,492
CUSTOMER 83,272
. . .
OEM_EXT 701

Tools for Viewing Data Buffer Usage 147

148 Oracle Space Management Handbook

Creating Separate Data Buffers
The process of assigning table or index blocks into named
block size tablespaces is very straightforward within Oracle9i.
We begin by creating a tablespace and using the new blocksize
parameter in the create tablespace syntax. In the example below
we create a 32K tablespace within the Oracle database.

create tablespace
 32k_tablespace
datafile
 '/u01/oradata/mysid/32k_file.dbf'
size
 100M
blocksize
 32k
;

Once we have the names tablespaces created, the next step is to
set a database cache to correspond to that block size.
Remember, and Oracle 9i we no longer have the init.ora file,
and we create the named cache dynamically with an alter
database statement.

alter system set db_2k_cache_size=200M;
alter system set db_4k_cache_size=500M;
alter system set db_8k_cache_size=800M;
alter system set db_16k_cache_size=1600M;

Once we've created the named RAM buffer, and the
tablespace, we are now ready to migrate the Oracle objects into
the new tablespace. There a variety of methods for moving
objects from one tablespace to another, and many Oracle
administrators are already familiar with using the create table as
select or CTAS syntax in order to move the table. For indexes,
the alter index rebuild command can be used to quickly migrate
an index tree between tablespaces.

Conclusion
Out of all of the sophisticated enhancements of Oracle9i, many
experienced DBAs consider multiple block sizes to be the most
important feature for tuning the Oracle database. The Oracle
database administrator now has up to seven separate and
distinct data pools that they can manage a control, giving the
Oracle9i DBA a huge amount of control over the amount of
data buffer blocks that can be assigned to specific database
objects. Through judicious inspection all of buffer access
characteristics, overall disk I/O can be tremendously reduced,
and the performance of the database will be greatly improved.

Conclusion 149

150 Oracle Space Management Handbook

Automated Table
Reorganization in
Oracle8i

CHAPTER

15

Automated Table/Index Reorganization In Oracle8i
Automation can free the DBA of boring, time-consuming tasks
and allows him to focus on more challenging activities.

Databases normally have a number of very volatile tables and
indexes, and I felt that strong, automated reorganizations
would be beneficial. The result is a comprehensive solution - a
complete PL/SQL package that can perform periodic table and
associated indexes reorganization automatically, is self-tuning,
portable, and (almost) platform and version independent. I
started this project since similar commercial products are a lot
more complex and normally are extremely expensive.

This PL/SQL package is a complementing solution to the one
presented in my article, "Setting Up an Automated Index-
Rebuilding System" (Oracle Publishing Online - September
2001). It can be run as a periodic complement to the auto-re-
indexing package (PKG_NDXSYS), or instead of it. This
solution has been tested on Unix (HP 10.7 and 11, Sun Solaris
7 and 8, AIX 4.3, Linux 2.x) and Windows servers (NT4, 2000),
on Oracle versions 8.1.5, 8.1.6, 8.1.7. Should work just fine
with Oracle 9i, but not with versions earlier than 8.1.5. It
requires some knowledge of UNIX shell scripts, SQLPlus
scripts, and PL/SQL. However, the full scripts are provided

and minimal knowledge would be enough to install the package
and get started.

When Reorganizing, How Many Extents to Use?
The current view is that objects do not need to be compressed
into a single larger extent in order to have good performance.
Although once the recommendation was to have single-extent
objects, today Oracle recommends not to have more than 1024
extents per object and that an object with reasonably and
equally sized extents is leading to the best performance. A very
interesting method is described in the Oracle white paper 711,
"How to Stop Defragmenting and Start Living." Since there is
no formula that I know of, and after some experimentation, I
propose the use of an algorithm for table and index rebuilds,
done manually or automatically (algorithm described in the
comments within the package). The extent size upper limit can
be increased for extremely large objects.

Refer to the Oracle manuals for the official view on space
management: "Oracle8i Tuning Manual" (Tuning I/O - Avoiding
Dynamic Space Management - Evaluating Multiple Extents),
and "Oracle8i Backup And Recovery Manual" (Developing A Backup
And Recovery Strategy - Developing A Backup Strategy - Perform
Backups After Unrecoverable/Unlogged Operations").

NOTE: The Unrecoverable/Nologging option should not be
used if there is a standby database.

Possible Reorganizing Strategies
Cron jobs at fixed times - the most common.
Inside batches, after massive changes, to keep objects
current - fairly common.

When Reorganizing, How Many Extents to Use? 151

152 Oracle Space Management Handbook

Inside batches, before massive changes, to improve the
batch performance - less used.
Just before backups, to backup an optimized database, or
just after backups, to backup faster the database.
Dedicated systems, with collection tables, control
procedures, etc. - in more complex environments.

Assumptions and Experimental Figures
On average, roughly, we could rebuild in 1 hour 5,000,000
rows or 5 GB
We had a time window of between 1 and 3 hours, between
21:00 and 24:00
We could not do all objects in one day (session)
Time acceptable without reorg is within a certain limit
Some days cannot be used for reorg, being used for cold
backup, etc.

Some Procedures Related to Table Reorganization
Coalesce free extents in tablespaces, before and after each
reorg - here is a script - ts_coalesce.sql
(http://www.dbazine.com/code/ts_coalesce.sql.txt)
Build a fragmented tablespace as a test environment - use a
script like ts_fragment.sql
(http://www.dbazine.com/code/ts_fragment.sql.txt) (first
create a user "cbosys2" and a tablespace for it)
The only visible objects in a GUI tablespace tool like
Tablespace Manager (Map) are the ones that actually take up
physical space: tables, indexes (regular, primary keys, unique

constraints, etc.) If some objects are not visible, it means
they are just references or definitions: (foreign keys, not
nulls, checks, etc.)
Determine the fragmentation level in a database - here are
some fragmentation assessment criteria:

o high numbers of extents (acceptable < 1024 extents
for very large objects - look out for extents per object
> 5)

o high percentages of chained rows per table
(acceptable < 3 percent- look out for percentages >
0.1 percent) - analyze the tables first

o high percentages of free space inside blocks (look out
for FREESPACE/BLOCK > 2*PCTFREE)

o high percentages of free space above highwatermark
(look out for EMPTY BLOCKS ABOVE HWM >
50 percent)

here are a few scripts to help with these tests:
objects_for_reorg.sql
(http://www.dbazine.com/code/objects_for_reorg.sql.txt)
and obj_next_ext_fail.sql
(http://www.dbazine.com/code/obj_next_ext_fail.sql.txt)

Important Issues Regarding Table/Index
Moving/Rebuilding

You cannot perform table reorg without index reorg, even if
you do not re-structure or relocate the index, because the
index becomes UNUSABLE after the table reorg, as the
ROWID references become invalid. That is why if you have
a table reorg scheduled, you may skip a scheduled index
reorg (for the affected indexes).

Important Issues Regarding Table/Index Moving/Rebuilding 153

154 Oracle Space Management Handbook

The new index is built either from the data in the index, or
from the data in the table, whichever source is smaller. This
is called "fast rebuild" and is available since Oracle 7.3.4. If
you suspect the index is already corrupted, you will have to
drop the index and re-create it with fresh data from the
table.
Oracle will place a lock on the table for the duration of the
table/index move/rebuild. The lock affects INSERT,
UPDATE, DELETE statements, but allows SELECT
statements. The DML will have to wait until the
move/rebuild is done. However, Oracle 8i (8.1.x) can allow
any DML statement if the DDL runs the ONLINE option.
ALTER TABLE/INDEX table_name/index_name MOVE/REBUILD ONLINE;

In this situation (locking), the indexes may not be available
to users for some periods of time and performance may be
affected. Conversely, the move/rebuild will fail if somebody
else has put a lock on the table and Oracle cannot acquire
exclusive access.
While ANALYZE COMPUTE does not lock the object,
the ANALYZE VALIDATE STRUCTURE locks the
object the same as the ALTER TABLE/INDEX
MOVE/REBUILD.

The Behavior of the "Alter Table/Index
Move/Rebuild" Commands

ALTER TABLE/INDEX table_name/index_name MOVE/REBUILD TABLESPACE
tablespace_name
STORAGE (PCTINCREASE 0 INITIAL 512M NEXT 256M);

will cause the database to try and locate an extent of 512M in
the selected tablespace, to allow rebuild and compression of the
existing object. If the object is larger than 512M, the rebuild
process will try to acquire a next extent of 256M and continue
the rebuild. If there is no extent of 512M, on most versions and
platforms, the rebuild process will revert to the tablespace
default for INITIAL, and start the rebuild (check or
experiment with your version to determine how this feature
works). Normally, this does not fail. However, the free space
for the next extent (256M) has to be available and found or the
rebuild will fail.

If you are unsure, the clause STORAGE (INITIAL 0K NEXT
0K) will often revert to tablespace defaults and almost always
work successfully, if the total free space is enough, but you can
end up having a large number of extents (even hundreds or
thousands).

Limitations of the "ALTER TABLE MOVE"
Command:

Supported only in Oracle 8.1.5 and higher
Does not support directly some objects and some data
types:

o Clustered tables, IOT's, overflow table of an IOT,
hash and composite partitions (range partitions are

The Behavior of the "Alter Table/Index Move/Rebuild"
C d

155

156 Oracle Space Management Handbook

supported), tables with columns containing LONG
and LONGRAW types, tables with columns
containing user-defined types, indexes on such
columns, function-based indexes, domain indexes,
partitioned tables containing a LOB column can be
reorg'ed on a per partition only, partitioned indexes
may not be rebuilt as a whole, for some object types
and data types there are special commands that can
be used as workarounds

Most of these limitations apply also to CTAS (Create Table
As Select) methods
Some of them apply also to index rebuilds
You can still use the SQL*Plus COPY command or the
EXPORT/IMPORT utilities

Manual Object Reorganization
Roughly, for us, the execution time was 100 minutes per 1 GB
of really used space (data). Resources: reorganizing can take up
to 300MB of memory and up to 30 percent CPU. It takes a lot
less on smaller systems.

reorg.sql - script to reorg all tables in the database
(http://www.dbazine.com/code/reorg.sql.txt)
reindex.sql - script to rebuild invalidated indexes - called by
reorg.sql (http://www.dbazine.com/code/reindex.sql.txt)
ts_coalesce.sql - script to coalesce tablespaces - called by
reorg.sql

This method will keep the rest of the database online and
available to users. For each table there are two steps.

Step 1
The ALTER TABLE MOVE command will lock the table for
changes, but will allow queries. While the table is moved, the
new table will actually be a TEMPORARY segment in the
destination tablespace, named something like "52.42" for the
duration of the reorg. The old table will continue to be there
and is dropped (and the new table renamed to the old name)
only when the new table build is finished successfully. The
TEMP tablespace is normally not used. However, RBS and
redo logs can take a serious hit.

If there is not enough space, the procedure will fail and the old
table will remain in place. This procedure can be run by the
schema owner or by the SYSTEM user. Relocating tables to
other tablespaces can be done manually, by editing the
generated reorg.lst script. If there is enough spare space, one can
create one or two flip-flop tablespaces, dedicated to moving
around reorganized objects, so that the objects are always
rebuilt in only a few larger extents when moved to the other
tablespace.

Step 2
The table move will change the ROWID's of the table rows,
and as such the indexes, which are based on ROWID's, will
become invalid (UNUSABLE). Therefore, the need to execute
step two immediately after step one - rebuild the invalid
indexes on the current table.

At the same time an advantage of using the table move
procedure is all constraints are preserved, and index definitions
are also saved, so that reindexing is possible using the fast

Manual Object Reorganization 157

158 Oracle Space Management Handbook

index REBUILD method, rather than the slower index DROP
and CREATE method.

The ALTER INDEX REBUILD command will restore the
index to a valid state. While the index is rebuilt, the new index
will actually be a TEMPORARY segment in the destination
tablespace, named something like "15.64" for the duration of
the rebuild. The old index will continue to be there and is
dropped (and the new index renamed to the old name) only
when the new index is finished successfully.

There is also another type of TEMPORARY segments during
the rebuild: the segments for storing the partial sort data,
because for larger indexes the sort_area_size is normally too
small. These segments are located in the TEMP tablespace and
they become visible as soon as the sort_area is filled and spills
over to disk. When the whole index is contained in these
segments, their growth will stop and the segments that will
hold the final index will start to grow in the destination index
tablespace. For small indexes, there are no segments in the
TEMP tablespace, as the sorting happens in memory (in the
sort_area, outside the SGA). Anyway, especially for large objects,
RBS and redo logs can take a serious hit. You should also
watch for space in the ARCHIVE LOGS directory.

If there is not enough space, the procedure will fail and the old
index will remain in place. This procedure can be run by the
schema owner or by the SYSTEM user. Relocating indexes to
other tablespaces can be done manually, by editing the
generated reindex.lst script. If there is enough spare space, one
can create one or two flip-flop tablespaces, dedicated to
moving around reorganized indexes, so that the indexes are

always rebuilt in only a few larger extents when moved to the
other tablespace.

This method is by far the preferred manual method for
table/index relocation and reorganization/defragmentation.

However, I would not recommend running these scripts
against the whole database in one session.

If you need more sessions to go through all the objects in the
database, you can use a similar technique to the one illustrated
for building session-based scripts for the ANALYZE
command, in my article Automated Cost Based Optimizer (Oracle
Publishing Online - September 2000) - section "Manual
Analysis of the DB1 Database".

Automated Object Reorganization
Our strategy will be a combination of cron jobs and a PL/SQL
package (PKG_TABSYS). Reorganizing tables/indexes
normally can be done online, without dropping objects, and has
a very positive impact on the general performance of the
database. I have been running the package for the last year with
no serious problems. The execution times seem to decrease
steadily after a few runs, as the package has some self-tuning
capability. The average move/rebuild times on Oracle8i have
come down from 90 minutes to 45 minutes. In theory, at least,
the more it runs, the less fragmented the objects become, and
the faster the systems will be. Some degree of tablespace level
fragmentation is to be expected. Remember that tablespace
fragmentation does not affect performance, but only the
growth capacity of the objects (specially very large ones). You
should keep an eye on the free space.

Automated Object Reorganization 159

160 Oracle Space Management Handbook

Prerequisites
You should have some system privileges (see the beginning
of the install_tabsys.sql script
http://www.dbazine.com/code/install_tabsys.sql.txt).
Set utl_file_dir = * (or at least c:\temp, or /tmp, etc.) in
init.ora, in order to allow log files to be created
Set job_queue_processes = 2 (or higher) in init.ora, in order to
allow dbms_job scheduling to work

Associated Tables
A set of three tables (tabsys_list, tabsys_sort, and tabsys_hist) hold
identifying, processing and historical information. The data
collected in the history table can also be used for queries later
on to find information useful for growth monitoring and
capacity planning. A fourth table (tabsys_ts) holds the
information about corresponding pairs: source table
tablespaces and target table tablespaces. You may want to give
careful consideration to this table. This section will cause table
relocation. Check for available space in the tablespaces.

Search for the following section in the install_tabsys.sql script
and adapt to your particular environment, BEFORE installing
the package. The package reads this table and checks object
location every time it runs.

prompt POPULATING TABLE tabsys_ts WITH YOUR VALUES
prompt
TRUNCATE TABLE tabsys_ts;
COMMIT;
INSERT INTO tabsys_ts VALUES ('SYSTEM', 'USERS');
COMMIT;

This will relocate any table found in any of the tablespaces in
the left-hand column (SYSTEM, etc.) to the corresponding
tablespace in the right-hand column (USERS, for objects not
owned by SYS or SYSTEM, in this case). If you do not
populate the table or just insert the same values left and right,
then the object will not be relocated. You can update this table
manually any time in the future.

Overview of the Package
Basically, the Automated Table/Index Rebuild package
(PKG_TABSYS) runs the 'ALTER TABLE MOVE' command
followed immediately by the 'ALTER INDEX REBUILD'
command, and will also:

Clean up residual temporary segments
Coalesce free space in tablespaces
Analyze the structural integrity of the objects
Generate valuable statistics usable by the CBO
Deallocate unused space from object blocks
Shrink object segments
Re-align the highwatermark to low levels
Re-organize fragmented objects into fewer extents
Re-structure (optimize) tablespace storage options
Re-structure (optimize) table storage options
Compact table blocks into fewer blocks
Re-attempt to run with modified parameters in case of
failure
Generate alerts if it detects failure to grow or reorg

Overview of the Package 161

162 Oracle Space Management Handbook

Detect some generic unavailability conditions
Process both tables and indexes
Reorganize/defragment, actually, the entire database

The code (circa 2500 lines) performs a lot of error checking
and decision making in support of the commands. Since you
cannot reorg everything in one session, objects are sorted and
organized in manageable sessions, which are then run one a
day, until the cycle is finished and a new cycle begins. Each
table reorg will cause the associated indexes to become invalid
(UNUSABLE) and as such an index rebuild MUST be
performed after the table reorg.

Initially, we build a few tables (see section ASSOCIATED
TABLES), then we populate them with data from the DATA
DICTIONARY and calculated from running the package, with
information about the processable objects (tables and indexes),
sorted by size (bytes) in descending order. The system
examines the objects one by one and marks them with 0 if no
reorg needed, with 99 if reorg required, with 999 if last reorg
failed, and with 9999 if last reorg was successful.

Based on a series of rules, the system then decides which object
is assigned to which session. It starts with the first session,
'empty', and examines the first object against the rules. If there
is a need for reorg, the object is assigned to the current session,
if there is no match, it is left for the next session. The process
continues until all objects are assigned, and there is a number
of sessions.

We then start to run the sessions, one at a time (probably daily).
The results of the run are written back into our 'TABSYS'
tables, to be used the next time we build sessions. When all

sessions are done, we examine the logs in the /tmp or c:\temp
directories for failed runs, and attempt to run them again.
Upon completion, an email message is sent to the DBA and the
process is ready to start again.

When run manually in an SQLPlus session, display procedures
ensure that debugging and detailed logging (hundreds of lines
of messages) are made as easy as possible - currently these
modules are commented out to avoid crashing the package
because of overloading the server output buffer - uncomment
them selectively for databases with very large numbers of
objects.

Although it will not account for all situations, the package does
log a wide variety of errors. The DBA will treat errors manually
as the automated system will only try to re-run a session in case
of failure. Some errors, like "failed because of resource busy",
simply mean that a lock could not be obtained, as some other
process was using the object, and can be ignored, as it will
probably succeed on the next run. A number of conditions and
options (e.g. parallel, analyze, nologging, etc.) are also available
to be enabled or disabled in the package body. Objects
dropped after the list was created will also cause benign errors.
Also, hitting tables with data types not supported for MOVE
will simply generate an error message and skip to the next
object. If the package is run automatically with 'DBMS_JOB',
we get only the summary output
(http://www.dbazine.com/code/DB1-TABsysPKG.log.txt),
which can include captured error messages. Most error
messages will also be logged in the 'TABSYS' tables themselves.

Overview of the Package 163

164 Oracle Space Management Handbook

Setup
The package is installed into the default Oracle schema
'MHSYS', which I use to host my automation packages. IT
CAN BE INSTALLED, AS IS, FOR UNIX AND NT
BASED SERVERS. It is a pretty comprehensive piece of
software, which is compatible with Oracle 8.1.5 or higher, on
both UNIX and NT, and includes routines to detect the
current OS, Oracle version and SID,

The code is amply commented. Run the install_tabsys.sql script
as user 'SYSTEM' from SQLPlus. Before installing, read the
top of the package body, just in case you need to make some
modifications. This section can also be used for tuning later, by
changing the values of a very large number of constants. Make
sure the script does not drop the existing schema 'MHSYS' if
already installed. The defaults will cover most situations and,
most likely, nothing will need to be changed. It has been run
against objects with sizes of up to 3500 MB. Sessions can vary
between 10 - 300 minutes. Have the logs emailed to you or, at
least, examine them manually.

You can use scripts to schedule or run the package similar to
the ones described in my article, "Setting Up an Automated
Index-Rebuilding System" (Oracle Publishing Online -
September 2001).

Using External Table
in Oracle9i

CHAPTER

16
External Tables in Oracle9i

Here's a step-by-step example of creating an external table and
querying the data source from within Oracle along with a
discussion of practical applications for external tables,
performance and management issues.

ORACLE9i has many new features, and one of my favorites is
the ability to create external tables. An external table is a table
whose structure is defined inside the database even though its
data resides externally as one or more files in the operating
system (see Figure 1). External tables are very similar to regular
tables in Oracle, except the data isn't stored in Oracle datafiles
and isn't managed by the database.

Figure 1: External table structure in Oracle.

External Tables in Oracle9i 165

166 Oracle Space Management Handbook

Example
This example begins with product information listed in a
Microsoft Excel spreadsheet (see Figure 2). The data is saved in
comma-separated values (CSV) format to
D:\products\products.csv. The spreadsheet contains three
columns: Product Number, Description, and Price. This file
contains the data that we'll query from Oracle.

Figure 2: Product data in Excel.

After saving the file from Excel, the next task is to create a
DIRECTORY object in Oracle that points to the physical

operating system directory that contains the file. This
DIRECTORY is required in order to create the external table.

SQL> CREATE DIRECTORY PRODUCT_DIR AS 'd:\products';
Directory created.

Now the external table is created by using the CREATE
TABLE command:

create table products (
product_no number,
description varchar2(100),
price varchar2(20)
)
organization EXTERNAL (
type oracle_loader
default directory PRODUCT_DIR
access parameters
(records delimited by newline
badfile 'products.bad'
logfile 'products.log'
fields terminated by ','
)
location ('products.csv')
)
reject limit unlimited
/

The first part of the CREATE TABLE statement holds no
surprises. Notice, however, that the next part of the statement
specifies ORGANIZATION EXTERNAL, which indicates
that this table is an external table. This part of the statement
also specifies a type of oracle_loader-the only one currently
supported by Oracle. Oracle_loader is actually an oracle TYPE
object defined in the database to handle the processing. Also
notice that the directory object is part of the CREATE TABLE
statement; it tells Oracle where to find the files.

The next part of the statement specifies the access parameters,
which should look familiar to anyone who's experienced with
SQL*Loader:

Example 167

168 Oracle Space Management Handbook

records delimited by specifies the characters that will be used to
separate rows.
badfile specifies the file that Oracle will use to store the
rejected rows.
logfile specifies the file that Oracle will use to store log
information. Documentation of any errors will be provided
in this file.
fields terminated by specifies the field separator that will
distinguish one column from another during the load.

Finally, the location and reject limit are specified:
location provides the name of the actual file to access. If
Oracle needs to access multiple files, they can be specified
as follows:
location ('file1.dat', 'file2.dat')

reject limit specifies the number of rows that can be rejected
before the command returns an error. If this threshold is
reached, the following error appears when trying to access
the table:
ERROR at line 1:
ORA-29913: error in executing ODCIEXTTABLEFETCH callout
ORA-30653: reject limit reached
ORA-06512: at "SYS.ORACLE_LOADER", line 14
ORA-06512: at line 1

The DDL for creating the statement will run even if the file
doesn't exist in the system, which can produce mixed results.
On the one hand, you won't know whether the table was
successfully created until a statement is executed against the
table, which in a data-warehousing environment might be at
3:00 a.m. Conversely, the file doesn't have to exist at the time
the table is created. In fact, the file can come and go as needed,
which is quite customary in OLAP environments.

The external table is now created. However, if another user
tries to access the table at this point, that user will receive an
error:

SQL> select count(*) from dave.products;
select count(*) from dave.products
 *
ERROR at line 1:
ORA-06564: object PRODUCT_DIR does not exist

To prevent this error, you must grant read and write access on
the directory for any user who wants to select data from the
table. Granting SELECT on the table itself will allow the object
to be seen, but you must also grant access to the underlying
directory object.

grant read, write on directory products_dir to alex;

Listing 1: Querying the table.

SQL> select product_no, substr(description,1,40) "Desc", Price from
products;

PRODUCT_NO Desc PRICE
---------- -------------------------------------- ---------------
12300 Robin Yount Autographed Baseball $29.99
12301 George Brett Autographed Baseball $19.99
12302 Dale Murphy Autographed Baseball $19.99
12303 Paul Molitor Autographed Baseball $19.99
12304 Nolan Ryan Autographed Baseball $19.99
12305 Craig Biggio Autographed Baseball $19.99
12306 Jeff Bagwell Autographed Baseball $19.99
12307 Barry Bonds Autographed Baseball $19.99
12308 Mark McGuire Autographed Baseball $19.99
12309 Sammy Sosa Autographed Baseball $19.99
12310 Jeff Kent Autographed Baseball $19.99
12311 Roger Clemens Autographed Baseball $19.99
12312 Goose Gossage Autographed Baseball $19.99
12313 Derek Jeter Autographed Baseball $19.99

14 rows selected.

Example 169

170 Oracle Space Management Handbook

Read/write access means that Oracle will be allowed to write to
that directory when it needs to update the logfile or badfile. As
an OS user, you don't have access to those files in the operating
system unless your ID has proper privileges; as a result, security
isn't compromised.

After creating the external table and granting privileges, the
table can be queried like any other table (see Listing 1).

The external table can be used as a substitute for SQL*Loader
and a regular table can be used to hold its data:

INSERT INTO PROD.PRODUCTS AS SELECT * from DAVE.PRODUCTS;

The data that was in Excel is loaded into Oracle, which allows
it to be backed up and to perform better than an external table.

Limitations
External tables in Oracle9i have the following limitations:

They're read-only, so no data manipulation language (DML)
operations (such as Insert, Update, or Delete) can be
performed against them. Also, no indexes can be defined on
the table. Oracle does plan to support writing to these tables
in a future release.
They don't support files larger than 2GB. If you attempt to
access a file larger than 2GB, Oracle fails with the following
error:
KUP - 04039: unexpected error while trying to find file
<file name> in director <directory name>

Certain commands against the table, such as ANALYZE,
will fail.

SQL> analyze table products compute statistics;
analyze table products compute statistics

*
ERROR at line 1:
ORA-30657: operation not supported on external organized
Table

This limitation is important because most DBAs have
scripts that regularly refresh object statistics based on a
schema. If you try to generate statistics on an external table,
the command will fail.
The data in external tables isn't backed up as part of regular
Oracle backup routines because it's outside the scope of the
database.

Performance
One expects the Oracle kernel to incur more overhead when
processing external tables. An Oracle TYPE and TYPE BODY
named sys.oracle_loader exist in the database and process all
statements accessing external tables. This process increases the
overhead to access the data, and when compared to a regular
table is many times slower. Oracle must fetch and perform
tasks that it normally doesn't perform (such as conversions,
handling rejections, and logging) and is therefore significantly
slower. I experimented with the performance of external tables
by creating an internal table with the exact data as the external
one:

SQL> create table products_internal as select * from
products;

Table created.

The table contained 5,292 rows, with the same data as in the
spreadsheet. The internal table didn't have any indexes or
primary keys defined. Based on the script shown in Listing 2,

Performance 171

172 Oracle Space Management Handbook

the internal table was consistently 8-10 times faster to access
than the external one. Optimally, external tables should be used
as a means to load data into internal tables and shouldn't be
queried as an external data source.

Listing 2: Access to the internal table is significantly faster than to the
external table.

set term off
col a new_value start
select dbms_utility.get_time() a from dual;
select count(*) from products_internal where product_no = 12313;
col b new_value stop
select dbms_utility.get_time() b from dual;
col c new_value answer
select (&stop - &start) c from dual;
col d new_value start_ext
select dbms_utility.get_time() d from dual;
select count(*) from products where product_no = 12313;
col e new_value stop_ext
select dbms_utility.get_time() e from dual;
col f new_value answer_ext
select (&stop_ext - &start_ext) f from dual;
col ans form 999
col ans_ext form 999
set term on
prompt
prompt
select 'Internal Table Execution Time in ms ', &answer ans
from dual;
select 'External Table Execution Time in ms ', &answer_ext ans_ext
from dual;

By taking the following actions, you can minimize the overhead
used when processing an external table:

Use the PARALLEL clause when you create the table. This
value indicates the number of access drivers that will be
started to process the datafiles and will divide the files into
portions that can be processed separately.
Use datatypes in Oracle that will match the physical data
attributes, which will eliminate costly data conversion.

Use fixed values when possible, including:
o Fixed-width character sets
o Fixed-length fields
o Fixed-length records

The RECORDS FIXED clause is listed under access
parameters and requires the definition of fields. In the
following example, the data line is 40 bytes long, plus one
byte for the new line. The field names must be the same as
the column names to which they correspond.

RECORDS FIXED 41
FIELDS
(
emp_first_name char(20)
emp_last_name char(20)
)

Use single-character delimiters, and use the same character
sets as used in the database.
Minimize rejections since Oracle performs more I/O for
each one.

Practical Applications
External tables have many different practical applications,
which I'll place into two categories: business processing and
database administration.

From the business-processing standpoint, external tables serve
a vital need in a data-warehousing environment, in which
Extract, Transform, and Load processes are common. External
tables make it unnecessary for users to create temporary tables
during these processes, thereby reducing required space and the
risk of failed jobs. External tables can be used instead of
temporary tables and utilities like SQL*Loader. They also

Practical Applications 173

174 Oracle Space Management Handbook

provide an easy way for companies to load different
information sources into Oracle-whether in Excel, ACT!, or
Access, information can be loaded and processed.

From the database administration view, I'm most interested in
features that help me do my job. I want to monitor those files
that I look at frequently-alert.log and init.ora-without leaving a
SQL> prompt. Then I can use SQL commands to query the
file and specify WHERE clauses for more sophisticated
processing. An example of creating an external table to point to
the alert log is as follows:

create directory BDUMP AS 'd:\oracle9i\admin\PROD\bdump';
create table alert_log (text varchar2(200))
organization EXTERNAL (
type oracle_loader
default directory BDUMP
access parameters
(records delimited by newline
badfile 'dave.bad'
logfile 'dave.log'
fields terminated by ' '
)
location ('PRODALRT.LOG')
)
reject limit unlimited;

Listing 3: The dba_external_locations view.

SQL> desc dba_external_locations;
Name Null? Type
--- -------- ----------------
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
LOCATION VARCHAR2(4000)
DIRECTORY_OWNER CHAR(3)
DIRECTORY_NAME VARCHAR2(30)

Database Administration
It's important to know what views in Oracle contain the
information pertaining to external tables. The view dba_tables

shows external tables and has a value of 0 for pct_free, pct_used,
ini_trans, and max_trans. All other storage columns in the view
are null. Scripts that use this view to determine problems
should be updated to access dba_external_tables. This view
contains all of the parameters that you specified when you
created the external table.

Another useful view is dba_external_locations, which provides a
quick way to see which files are accessed from the database (see
Listing 3).

Database Administration 175

176 Oracle Space Management Handbook

Instructors Guide to
External Tables

CHAPTER

17
An Oracle Instructor's Guide to Oracle9i - External
Tables

This is the second article in a three-part series on Oracle's latest
release, Oracle9i. The first article offered information on
persistent initialization parameter files, remote
startup/shutdown, database managed undo segments,
resumable space allocation and flashback query.

In this installment, we'll discuss external tables, tablespace
changes, Oracle managed files, multiple blocksizes and cache
configuration, on-line table reorganization and index
monitoring.

The last article in this series will cover RAC (Real Application
Clusters), fail safe, data guard, fine-grained resource
management, fine-grained auditing and label security.

External Tables
Seasoned data warehouse administrators know that getting data
out of the data warehouse is not the only challenging issue they
must address. Extracting, transforming and loading data into
the data warehouse can also be quite formidable (and quite
expensive) tasks.

Before we begin our discussion on data warehousing, we need
to understand that the data warehouse always contains data
from external sources. The data is extracted from the source
systems, transformed from operational data to business data
using business rules, and ultimately, loaded into the data
warehouse tables. This process of extracting data from source
systems and populating the data warehouse is called Extraction,
Transformation and Loading or ETL. Shops deploying data
warehouses have the options of purchasing third-party ETL
tools or writing scripts and programs to perform the
transformation process manually.

Before Oracle9i, the most common methods of manually
performing complex transformations were:

The extracted data would be loaded into staging tables in
the data warehouse. The staged data would be transformed
in the database and then used as input to programs that
updated the permanent data warehouse tables.
The data would be transformed in flat files stored outside of
the database. When the transformation process was
complete, the data would be loaded into the data
warehouse.

External Tables 177

Oracle9i introduces external tables, which provide a
mechanism to view data stored in external sources as if it were
a table in the database. This ability to read external data
provides a more straightforward method of loading and
transforming data from external sources. Administrators no
longer need to reserve space inside the database for staging
tables or write external programs to transform the data outside
of the database environment. By making it no longer necessary
to stage data in the Oracle database, Oracle9i's external tables
have essentially streamlined the ETL function by merging the
transformation and loading processes.

178 Oracle Space Management Handbook

External tables in Oracle are read only and cannot have indexes
built upon them. Their main use is a data source for more
traditional Oracle table structures. Data warehouse
administrators are able to use the CREATE TABLE AS
SELECT…. and the INSERT INTO…..AS SELECT
statements to populate Oracle tables using the external source
as input.

Much of the data validation and cleansing that occurs during
the ETL process requires access to existing data stored in the
data warehouse. Since the external table data is viewed by the
database as ordinary table data, SQL, PL/SQL and Java can be
used to perform the data transformations. Joins, sorts,
referential integrity verification, ID lookups and advanced
string manipulations can be performed in the database
environment. In addition, advanced SQL statements such as
UPSERT and multi-table INSERT statements allow data to be
easily integrated into the warehouse environment. The power
of the database can be fully utilized to facilitate the
transformation process.

External table definitions do not describe how the data is
stored externally, rather they describe how the external data is
to be presented to the Oracle database engine. Let's take a
quick look at an external table definition:

CREATE TABLE empxt
(empno NUMBER(4),
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate VARCHAR2(20),
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2))

ORGANIZATION EXTERNAL(TYPE ORACLE_LOADERDEFAULT DIRECTORY dat_dirACCESS
PARAMETERS(records delimited by newlinebadfile
bad_dir:'empxt%a_%p.bad'logfile log_dir:'empxt%a_%p.log'fields
terminated by ','missing field values are null(empno, ename, job,
mgr,hiredate, sal, comm, deptno))LOCATION ('empxt1.dat',
'empxt2.dat'))REJECT LIMIT UNLIMITED;

Most of the above table's definition should be familiar to us.
However, a few parameters warrant further investigation:

ORGANIZATION EXTERNAL - Designates that the
table's data resides in an external location.
TYPE - Indicates the access driver. The access driver is the
API that interprets the external data for the database. If you
do not specify TYPE in the table's definition, Oracle uses
the default access driver, oracle_loader.
DEFAULT DIRECTORY - specifies one or more default
directory objects that correspond to directories on the file
system where the external data resides. Default directories
are able to contain both source data and output files (logs,
bad files, discard files, etc.). The directory objects that refer
to the directories on the file system must already be created
with the CREATE DIRECTORY SQL statement. In
addition, READ access must be granted to directory objects
containing the source data and WRITE access must be
granted to all directories that are to contain output files
(bad_dir, log_dir). Users wanting access to external table data
must be granted the appropriate security on the directory
objects as well as the table.

External Tables 179

180 Oracle Space Management Handbook

ACCESS PARAMETERS - Assigns values to access driver
parameters.
BADFILE, LOGFILE -Oracle load utility output files.
LOCATION - Specifies the location for each external data
source. The Oracle server does not interpret this clause. The
access driver specified interprets this information in the
context of the external data.
PARALLEL (not specified) - Enables parallel query
processing on the external data source.

Oracle9i external tables provide great benefits to warehouse
environments by combining the transformation and external
data access processes. Oracle calls the process "pipelining" and
describes it as "a whole new model for loading and
transforming external data."

There is a wealth of information available on Oracle9i external
tables. Instead of providing you with an in-depth description of
how to implement and administer Oracle9i external tables,
please refer to Dave Moore's excellent article in DBAzine.com
titled "External Tables in Oracle9i." His suggestion to use the
external table feature to use SQL statements to search the
database alert log is a GREAT idea!

Tablespace Changes
Oracle9i provides the database administrator with a variety
(read that bewildering array) of new tablespace parameters and
block sizes. Administrators are now able to create Oracle
managed tablespaces, user managed tablespaces, locally
managed tablespaces, dictionary managed tablespaces, specify

AUTOALLOCATE, UNIFORM, PERMANENT, UNDO as
well as select block sizes of 2K, 4K, 8K, 16K, or 32K.

The tablespace definition below combines a few of the
aforementioned options:

CREATE TABLESPACE oracle_local_auto DATAFILE SIZE 5M BLOCKSIZE 2K;

Many of the parameters were not specified intentionally to
highlight some of the default specifications for Oracle9i
tablespaces. Although some of the parameters we will review
were introduced in earlier releases, it is important to discuss
them to obtain a clear understanding of tablespace
administration in Oracle9i. Let's continue our discussion by
taking a closer look at the tablespace's definition:

Because a datafile specification was not provided, the
tablespace is Oracle managed. The datafile clause is only
optional if the db_create_file_dest initialization parameter is
set. The parameter specifies an operating system directory
that is the default storage location for Oracle managed
datafiles. The operating system directory must already exist
and must have the proper security permissions to allow
Oracle to create files in it. If a datafile specification and
SIZE parameter are not specified, a 100 megabyte file is
created by default. During tablespace creation, the database
server selects a file name for the Oracle managed file and
creates the file in the directory specified in the
db_create_file_dest initialization parameter. When the
tablespace is dropped, Oracle automatically removes the
Oracle managed files associated with the dropped
tablespace. By default, an Oracle managed datafile is
autoextensible with an unlimited maximum size.

Tablespace Changes 181

182 Oracle Space Management Handbook

The tablespace will be locally managed because we did not
specify EXTENT MANAGEMENT DICTIONARY
during creation. Oracle has changed the default from
dictionary managed in Oracle8i to locally managed in
Oracle9i. Locally managed tablespaces track all extent
information in the tablespace itself, using bitmaps. Tracking
extents in bitmaps improves speed and concurrency of
space operations.
Administrators are able to override Oracle managed extents
by specifying EXTENT MANAGEMENT DICTIONARY
in the tablespace definition. Dictionary managed tablespaces
rely on data dictionary tables to track space utilization
within the tablespace. The SYSTEM tablespace is always
dictionary managed.
The tablespace will use the default free space management
setting of SEGMENT SPACE MANAGEMENT
MANUAL. As a result, Oracle will use freelists to manage
free space within segments in the tablespace. Free lists are
lists of data blocks that have space available for inserting
rows.
Administrators have the option of overriding the default
specification of SEGMENT SPACE MANAGEMENT
MANAUAL with SEGMENT SPACE MANAGEMENT
AUTO. SEGMENT SPACE MANAGEMENT AUTO
tells Oracle to use bitmaps to manage free space within a
segment. The bitmap structure stores information that
describes the amount of space in the blocks that are
available for row inserts. As free space within each block
grows and shrinks, its new state is reflected in the bitmap.
Bitmaps allow Oracle to manage free space more
automatically. As a result, tracking free space within
segments using bitmaps provides a simpler and more

efficient method of free space management. Only
permanent, locally managed tablespaces can specify
automatic segment space management.
The extent management will be AUTOALLOCATE (extent
sizes defined and managed by Oracle) because a default
storage clause is not be specified. If the default storage
clause is not specified, or if it is specified with
PCTINCREASE not equal to 0 and/or INITIAL not equal
to NEXT, then Oracle creates a locally managed tablespace
with extents managed automatically (AUTOALLOCATE).
Administrators are also able to specify that the tablespace is
managed with uniform extents of a specific size by
specifying UNIFORM SIZE in the tablespace's definition
or by specifying INITIAL = NEXT and PCTINCREASE
= 0. This specification tells Oracle to create a uniform
locally managed tablespace with uniform extent size =
INITIAL.
The tablespace datafile will have a 2K blocksize. Oracle9i
allows administrators to specify a nonstandard block size
for tablespaces. In order for the tablespace specification to
override the standard database blocksize specified during
database creation, the db_cache_size and db_nk_cache_size
(where nk matches the tablespace block size) must be set in
the initialization parameter file. Oracle9i allows
administrators to choose from 2K, 4K, 8K, 16K and 32K
blocksizes.
Finally, it will be autoextensible (the file will be able to
automatically grow in size) because autoextensible is the
default for an Oracle managed file.

Let's take a look at our tablespace definition again. This time
we will provide all of the specifications for some of the features
we have just discussed:

Tablespace Changes 183

184 Oracle Space Management Handbook

CREATE TABLESPACE oracle_local_auto DATAFILE SIZE 5M BLOCKSIZE 2K
AUTOEXTEND ON EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT MANUAL;

Oracle9i's new tablespace definitions allow administrators to
tailor their environments to meet application requirements.
We'll end our discussion on Oracle9i tablespaces with a few
quick recommendations:

Oracle managed - In addition to the benefits of not needing
to create filenames and define specific storage requirements,
managed files provide the additional advantage of being
deleted from the operating system when the DROP
TABLESPACE statement is executed. But these benefits do
not outweigh the disadvantage of losing the flexibility of
specifying different mountpoints or drives manually. Most
administrators will prefer to have the flexibility of placing
files on different drives or mountpoints and to not be
forced into using one directory specification (whether that
directory is striped or not).
Multiple block sizes - Multiple blocksize specifications allow
administrators to tailor physical storage specifications to a
data object's size and usage to maximize I/O performance.
In addition, it also allows administrators to easily use the
transportable tablespace feature to transfer tablespaces
between databases having different default blocksizes (i.e.
moving data from an OLTP application to a data
warehouse).
Locally managed - Oracle is highly recommending that
locally managed tablespaces be used for all tablespaces
except the SYSTEM tablespace. Because extent
management is tracked internally, the need to coalesce
tablespaces is no longer required. In addition, allocating or

releasing space in a locally managed tablespace avoids
recursive space management operations (updates to data
dictionary tables that track space utilization). Oracle also
states that data objects with high numbers of extents have
less of a performance impact on locally managed
tablespaces than they do on their dictionary managed
counterparts.

Online Table Reorganizations
Oracle9i allows DBAs to perform complex table redefinitions
on-line. Administrators now have the capability to change
column names and datatypes, manipulate data, add and drop
columns and partition tables while the table is being accessed
by on-line transactions (for a complete list of changes, please
refer to the Oracle9i Administration Guide). This new feature
provides significant benefits over more traditional methods of
altering tables that require the object to be taken off-line during
the redefinition process. Oracle9i provides a set of procedures
stored in the PL/SQL package dbms_redefinition as the
mechanism to perform on-line redefinitions.

Most tables in Oracle can be redefined. The Oracle9i
Administration Guide provides a listing of table specifications
that will prohibit a table from being redefined on-line. For
example, one requirement is that the table being redefined must
have a primary key. Oracle9i provides a procedure that will
check the table to determine if it can be redefined. The example
below shows the table SCOTT.SOURCE_EMP being checked
to determine if it meets the on-line redefinition criteria:

EXEC dbms_redefinition.can_redef_table ('SCOTT', 'SOURCE_EMP');

Online Table Reorganizations 185

186 Oracle Space Management Handbook

Administrators create an empty work table in the same schema
as the table to be redefined. This work table is created with all
of the desired attributes and will become the new table when
the redefinition is executed. The two table definitions below
show our source table (SCOTT.SOURCE_EMP) and the table
containing our desired attributes (SCOTT.WORK_EMP):

CREATE TABLE scott.source_emp
(empno NUMBER(4) PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7, 2),
comm NUMBER(7, 2),
deptno NUMBER(2));

create table scott.work_emp
(enum NUMBER PRIMARY KEY,
lname VARCHAR2(20),
new_col TIMESTAMP,
salary NUMBER));

After the redefinition process is complete,
SCOTT.WORK_EMP will become the new
SCOTT.SOURCE_EMP table and SCOTT.SOURCE_EMP
will become SCOTT.WORK_EMP. The tables are in effect
"swapped" during the final phase of transformation.

The next step is to transfer the data from the
SCOTT.SOURCE_EMP table to SCOTT.WORK_EMP using
the dbms_redefinition.start_redef_table procedure. The step also
links the two tables together for the remainder of the
redefinition process. Administrators code column mappings
and data modifications during this step to transform the data.
The statement below shows the SCOTT.SOURCE_EMP data
being manipulated as it is being transferred to the
SCOTT.WORK_EMP table:

EXEC dbms_redefinition.start_redef_table
('SCOTT', 'SOURCE_EMP', 'WORK_EMP', 'EMPNO ENUM, ENAM LNAME, SAL*3
SALARY')

The above redefinition statement multiplies the SALARY
column by three and renames columns EMPNO to ENUM
and ENAM to LNAM. The work table also has a new column
added (NEW_COL) and does not have column definitions for
JOB, MGR, HIREDATE, COMM, DEPTNO.

Triggers, indexes, constraints and grants can now be created on
the work table. Referential constraints must be created using
the DISABLE option. All triggers, indexes, constraints and
grants replace those on the source table being redefined.

The final step of the redefinition process is to execute
dbms_redefinition.finish_redef_table, which performs the following
functions:

The work table becomes the new source table. The new
source table's definition includes all grants, indexes,
constraints and triggers created on the work table during the
transformation process.
All referential integrity constraints created on the work table
are enabled.
The source table becomes the new work table. All grants,
indexes, constraints and triggers that were on the old source
table are also transferred. Referential integrity constraints on
the new work table are disabled.
All DML statements applied to the old source table during
the redefinition process are transferred to the work (new
source) table.
The tables are locked for the length of time it takes to
perform the table name "swap."

Online Table Reorganizations 187

188 Oracle Space Management Handbook

PL/SQL procedures that access the table being redefined
are invalidated. They may remain invalidated if the
redefinition process has changed the table structure in such
a way that they can no longer successfully access the table
data.

During the time period between the executions of
start_redef_table and finish_redef_table, Oracle9i saves all DML
changes being applied to the source table. These recorded
changes are applied to the work table during the final step of
the transformation process. The number of stored changes that
need to be applied has a direct affect on the length of time it
takes finish_redef_table to execute. A large number of changes
being applied to the source table during the redefinition
process may cause the finish_redef_table step to become quite
"lengthy." Administrators are able to execute the
dbms_redefinition.sync_interim_table procedure to periodically
synchronize the source and work tables during the period
between start_redef_table and finish_redef_table. Periodically
synchronizing the tables reduces the number of stored changes
that need to be applied to the work table and the amount of
time it takes finish_redef to execute.

Oracle9i supplies dbms_redefinition.abort_redef_table that can be
used to cancel the redefinition process. Administrators are able
to abort the process at any time between the executions of
start_redef_table and finish_redef_table.

Index Monitoring
Determining if an index will increase performance is a pretty
straightforward process. The administrator is focusing their
tuning efforts on a particular table or query and is able to

gather the specific information necessary to assist in the
decision making process.

Dropping unused indexes is also an important part of
application tuning. Indexes force Oracle to occur additional
I/O every time a row is inserted or deleted into the table they
are built upon. Every update of the table's columns incurs
additional I/O to all indexes defined on those columns.
Unused indexes also waste space and add unnecessary
administrative complexity.

Determining if indexes were being used in releases prior to
Oracle9i was a time consuming and error-prone process.
EXPLAIN plan and trace output could be used but there was
no single mechanism that monitored index usage at the
database level.

Oracle9i simplifies the index usage monitoring process by
providing the ALTER INDEX……… MONITOR USAGE
command. To successfully start or stop a monitoring session,
the user must be logged on as the schema owner of the index.
The statement below turns monitoring on for the index
SCOTT.EMPIDX while the second statement ends the
monitoring session:

ALTER INDEX scott.empidx MONITORING USAGE;
ALTER INDEX scott.empidx NOMONITORING USAGE;

Index Monitoring 189

The v$object_usage table can then be accessed to determine if the
index was used during the monitoring session. When the
session is started, Oracle clears the information in v$object_usage
for the index being monitored and enters a new start time
identifying when the index monitoring session started. After
the index monitoring session is concluded, the USED column
in the v$object_usage table will contain the value 'YES' if the

190 Oracle Space Management Handbook

index was used during the monitoring session and the value
'NO' if it was not.

In the last installment of this series, we'll discuss RAC (Real
Application Clusters), fail safe, data guard, fine-grained
resource management, fine-grained auditing and label security.

Thanks and see you in class!

Using Locally-
Managed Indexes

CHAPTER

18
Locally Managed Indexes

OK, I'll say it. Oracle does not always work the way I want it to
work. The most obvious example of this is how indexes are
managed. As data is manipulated, it is evident that the index
does not reuse space that it had. For example, if I have a
column containing the values A,D,B,E,C,F, and I put an index
on this, then the index is created in the following order:

A,B,C,D,E,F.

This is part of what makes the index access so fast. So when I
perform an update and change C to G, I will have the
following:

A,B, ,D,E,F,G

The space in which the C was held is not reused. This actually
is a good idea since it makes the update statement much faster
than if a complete index rebuild was necessary for every
update. The cost for this speed is empty holes in the index.
Over time, it becomes evident that the index on the same
number of rows slowly takes more space. To get this empty
space back, you need to periodically rebuild an index.

Rebuild in the same Tablespace
When you rebuild an index, you have the choice of rebuilding it
in the same tablespace or not. Remember that the current index

Locally Managed Indexes 191

192 Oracle Space Management Handbook

exists until the new one is successfully created. This can give
lead to fragmentation in the current tablespace that only
worsens over time. An example of this is an index that was
initially 256K with a next extent of 64K. If this index had been
spread out to 3 extents, you could have the following:

Ext1(128k),other index,ext2(64k),other index, ext3(64k), other index

If you leave the index definition as it is, the rebuild will recreate
the index in the first block that can hold 128k, resulting in:

Ext1(128k),other index,ext2(64k),other index, ext(64)3, other
index,temporary(128k)

and then:

free(128k),other index,free(64k),other index, free(64)3, other
index,ext1(128k)

Now there is more free space mixed in with the indexes and if
the index grows and can't fit in 128k anymore, you may end up
with chunks of free space that are unusable.

No Fragment
To avoid this fragmentation, the common approach is to
rebuild all of the indexes in the tablespace into another
tablespace, coalesce this tablespace, and then rebuild them
back. This means rebuilding the index twice when you want to
do it once.

The other option is simply to drop the indexes, coalesce the
tablespace, then recreate. This will set any objects depending
on this table to an invalid state and they will need to be
recompiled. Depending on sizes, it is usually faster to rebuild.

8.1 to the Rescue
To avoid spending the time to rebuild, you should ensure that
all extents in the tablespace are the same. Initial is the same as
next and all indexes have the same ...WHAT?. Then it doesn't
matter if the tablespace becomes fragmented because all the
space remains usable. If you are going to do this, you should
also take advantage of the new locally managed tablespaces that
Oracle provides in V.8.1.

First, create a tablespace and give it a uniform extent size:

Create tablespace local64k_idx
Datafile '…/local64k_idx01.dbf' size 512M
Autoextend on next 10M maxsize unlimited
Extent management local uniform size 64k;

Next, put the indexes in this tablespace and don't worry about
fragmentation.

Now before you start thinking, 'finally, this guy wrote a short
article,' here's another important question: When should you
decide to rebuild an index and reclaim the empty space within
it? I usually say that an index that is in more than 4 extents
should be rebuilt. And what if the index is really 1M? Should
you rebuild it each time when a rebuild is not needed at all?

More Than One
You probably already know the answer to that question. You
will simply have multiple tablespaces, each locally managed at
different sizes. Since my tolerance is an index in 4 extents, I
create one tablespace at an extent size of 2 blocks, one at 8, one
at 32, and one at 128. See how this all falls into my 4's? If I
have an 8k block size, then I create a 16k, 64k, 256k, 1M.

8.1 to the Rescue 193

194 Oracle Space Management Handbook

So where do you put what? Of course, you have to start with a
guess. Go ahead and put them in whichever of the 4 extents
you think is correct and analyze all of them. The rebuild script
will put each where it belongs.

What Goes Where
The idea of the rebuild is that any index that is between the
extent size for this tablespace and the extent size for the next
tablespace belongs in this tablespace. You should pull all of
these indexes into this tablespace. So we have the following:

TABLESPACE EXTENT INDEX SIZE
16K indexes less than 64k
64K indexes >= 64k and less than 256k
256K indexes >=256k and less than 1M
1M indexes >=1M

Break Points
So as not to be fooled by over-allocated indexes, you should
check the leaf_blocks for the index instead of the bytes. This
gives a true picture of space used instead of space allocated.

Assuming you have a block size of 8k, you should first find the
number of blocks in 64k to use as your comparison point.
variable limit number
begin
select 65536/value into :limit
from v$parameter where name = 'db_block_size';
end;
/
print :limit

Script
Each tablespace will have it's own script, but they are all
basically the same, as indicated by the following:

spool rebuild_local16.sql
select 'alter index '||owner||'.'||index_name||' rebuild' ||chr(10)
'tablespace local16k_idx'||
' nologging;'||chr(10)||
'analyze index '||owner||'.'||index_name||' compute statistics;'from
dba_indexes
where leaf_blocks < :limit
and owner not in ('SYS','SYSTEM')
and last_analyzed is not null
and partitioned= 'NO'
and tablespace_name != 'LOCAL16K_IDX';
spool off
@rebuild_local16.sql

For the other tablespaces, use the following where clauses:

64k: where leaf_blocks >= (:limit) and leaf_blocks < (4*:limit)
256k: where leaf_blocks >= (4*:limit) and leaf_blocks < (16*:limit)
1M: where leaf_blocks >= (16*:limit)

See the pattern?

Each tablespace will pull in all the indexes that belong in it. If
you have partitioned indexes, just throw in a union with
dba_ind_partitions.

Note that you are only analyzing indexes when you rebuild
them. This entire approach depends on the index being
analyzed the first time it is built so you have data to work with.

Conclusion
Last month we talked about how to partition indexes when
they get too big. You will see that indexes that are less than a
level of 3 do not usually become bigger than 4M. If you do

Script 195

196 Oracle Space Management Handbook

have indexes larger than 4M, you might also want to make a
local 4m tablespace.

Now you can rebuild just the indexes that have either spread
out or truly grown, without having to worry about
fragmentation in these tablespaces. What a relief!

Sizing Oracle Index
Segments – Part 1

CHAPTER

19
How Big Should This Index Be?

A client lets us know that they need an index added to the
charge back table. Performance is terrible on the new
application, and they forgot the index for the file date and
status fields. By the way, there are 1,469,176 rows currently in
the table.

Of course, we have all heard this before. Moreover, the lack of
planning on their part constitutes an emergency for us. We
need to get that on there quickly. So how big do we make the
index?

In the past, I have gone out and created the index just based on
a guess. I would give the initial extent of 10M and the next of
1M and max extents unlimited. The index would then take as
many extents as needed. This can be less efficient when I am
doing any index scans since I don't necessarily have the extents
physically next to each other. I can also overshoot the real size
by a large margin.

B-tree Theory
Ideally, the index is in one extent. Let's ignore partitioning for
now and just make one index on the complete table. In fact,
this came up for one of my clients that is currently on 7.3.3
Oracle, so I do not have the partitioned index option.

How Big Should This Index Be? 197

198 Oracle Space Management Handbook

Assuming that the index holds the key value and then the
address of the row in the table with this value. Then each row
in the table must have an entry in the leaf blocks of the index.
The branch blocks are used as an index to the leaf nodes. So
each block for the leaf nodes needs to be addressed by the next
level up of branch nodes.

A (very) simple example:

We are indexing a table that has a single column, containing the
letters of the alphabet. Each block holds 4 values. In reality, it
would contain a value and an address, we will show only the
value just to keep the picture simple:

Branch Block 21
P11,Z12
Branch Block 11 12
Value D1,H2,L3,P4 T5,X6,Z7
Leaf Block 1 2 3 4 5 6 7
Value ABCD EFGH IJKL MNOP QRST UVWX YZ

You can think of the branch addressing as saying 'values less
than _'. If we were looking for the address of the row for 'K'
we would visit blocks 21, 11,3.

Estimate Leafs
So armed with this theory, I started with the length of each
field plus 1 byte per column for the column header to get the
row length:

select sum(data_length) + 2 row_length
from dba_tab_columns
where column_name in ('CB_FILE_DATE','CB_STATUS')
and table_name = 'CHARGEBACK_DATA';

Let's see how many of these rows will fit into a block. For this
we need to decide how much free space we will leave when
defining this index. For the example, we will use pctfree = 10.

Select block_size,row_length
,trunc(block_size * .9 / row_length) rows_per_block
From
(select sum(data_length) + 2 row_length
from dba_tab_columns
where column_name in ('CB_FILE_DATE','CB_STATUS')
and table_name = 'CHARGEBACK_DATA')
,(select value block_size from v$parameter
where name = 'db_block_size');
BLOCK_SIZE ROW_LENGTH ROWS_PER_BLOCK
---------- ---------- --------------
2048 11 167

Now let's find the total number of leaf blocks we should need:

Select block_size,row_length,rows_per_block,num_rows
,ceil(num_rows/rows_per_block) num_blocks
from
(Select block_size,row_length
,trunc(block_size * .9 / row_length) rows_per_block
from
(select sum(data_length) + 2 row_length
from dba_tab_columns
where column_name in ('CB_FILE_DATE','CB_STATUS')
and table_name = 'CHARGEBACK_DATA')
,(select value block_size from v$parameter
where name = dB_block_size')
)
,(select num_rows from dba_tables
where table_name = 'CHARGEBACK_DATA');

BLOCK_SIZE ROW_LENGTH ROWS_PER_BLOCK NUM_ROWS NUM_BLOCKS
---------- ---------- -------------- ---------- ----------
2048 11 167 1469176 8798

So we know we need around 8,798 (remember, we are
estimating) blocks. What do we need for branches?

Estimate Branches
For the branches, we logically need to address each leaf from
the next layer up. So looking at it simply, we have 8,798 rows
(the number of leaf blocks) that need to be addressed. We saw

Estimate Branches 199

200 Oracle Space Management Handbook

in the previous section that a block hold 167 rows, so we have
8,798/167 for the number of branch blocks on the first level.

select rows_per_block,num_blocks
,ceil(num_blocks/rows_per_block) num_branch_blocks
from
(Select block_size,row_length,rows_per_block,num_rows
,ceil(num_rows/rows_per_block) num_blocks
from
(Select block_size,row_length
,trunc(block_size * .9 / row_length) rows_per_block
From
(select sum(data_length) + 2 row_length
from dba_tab_columns
where column_name in ('CB_FILE_DATE','CB_STATUS')
and table_name = 'CHARGEBACK_DATA')
,(select value block_size from v$parameter
where name = dB_block_size')
)
,(select num_rows from dba_tables where table_name = 'CHARGEBACK_DATA')
);
ROWS_PER_BLOCK NUM_BLOCKS NUM_BRANCH_BLOCKS
-------------- ---------- -----------------
167 8798 53

For the next level up, we only need 1 block since there are only
need 53 blocks to be addressed. So our total need estimate is:

(1 + 53 + 8798) * 2048 bytes = 18,128,896 bytes = 17.2M

Making the Index
So now we can make our index with at least an educated size
guess. Remember that this is only an estimate, we didn't figure
out null columns, block header space and any of the other
minor things that change the true size of an index.

You can use this same approach for estimating the size of the
next extent if you know how many new rows to expect per
week. This sizing does not work for bitmap indexes, just the
normal b-tree.

Sizing Oracle Index
Segments – Part 2

CHAPTER

20
Is This Index the Right Size?

In the first article of this two-part series, we talked about how
to estimate a good starting size for a new index. What about
the indexes that already exist? Are they the right size? One of
the most common problems we see in an existing system is that
the indexes were made based on some estimate and now we
need to figure out if they are the right size.

Validate Structure
The first way I learned to check the correct size of an index is
using the 'analyze index … validate structure' . This command
then puts the results in the index_stats table and gives you a
detailed view of your index. The problems I started to
encounter with this method are that it can be slow; this
'analyze' command locks out users; and the results are different
for partitioned and sub-partitioned indexes. So I started looking
for a new way. Turns out it was staring me in the face all along.

Dba_Indexes
We are usually analyzing our tables at least weekly, some
nightly. So the statistics we need are already available.

As of version 8.0, Oracle added num_rows to the dba_indexes
table. Previously we would have joined dba_indexes to dba_tables
to get num_rows for an index. In doing this, however, we don't
take into account where the index value might be null and
therefore not be included. The number of rows in the index

Is This Index the Right Size? 201

202 Oracle Space Management Handbook

will be less than or equal to the number of rows in the table. So
the added field is the final piece of information needed to
determine how much space this index really needs.

To see the current space used in blocks for the indexes on the
table TASK, we can run the following:

select a.owner,a.index_name,a.leaf_blocks,a.num_rows
from dba_indexes a
where a.owner not in ('SYS','SYSTEM')
and a.index_type!='BITMAP'
and a.last_analyzed is not null
and a.table_name = 'TASK';

OWNER INDEX_NAME LEAF_BLOCKS NUM_ROWS
ORADBA TASK_APPT_FK 65 23771
ORADBA TASK_CENTER_FK 99 45975
ORADBA TASK_CLIENT_FK 101 45975
ORADBA TASK_ENC_FK 117 45975
ORADBA TASK_TYPE_FK 74 45975
ORADBA TASK_DT_REQ 84 45975

Given this, we see that 23,771 rows of the index task_appt_fk
currently fit into 65 blocks. There might be unused space in
these 65 blocks, but we will deal with that later. This means
that we have approximately 366 rows per block (23,771/65).
Using the logic presented in the first article on B-tree sizing, if
we had more than 366 blocks, then we would have a level of
branch blocks. But this index has just the one root block. Our
total need for this index is then 65 leaf_blocks + 1 root block = 66
blocks, as it is currently defined.

So how much space was given to this index? This is an answer
we always have in dba_segments. Let's add it to our query:

select a.owner,a.index_name,a.leaf_blocks,a.num_rows,b.blocks
from dba_indexes a
,dba_segments b
where a.owner not in ('SYS','SYSTEM')
and a.index_type!='BITMAP'
and a.last_analyzed is not null
and a.table_name = 'TASK'
and a.owner = b.owner
and a.index_name = b.segment_name;

OWNER INDEX_NAME LEAF_BLOCKS NUM_ROWS
ORADBA TASK_APPT_FK 65 23771
ORADBA TASK_CENTER_FK 99 45975
ORADBA TASK_CLIENT_FK 101 45975
ORADBA TASK_ENC_FK 117 45975
ORADBA TASK_TYPE_FK 74 45975
ORADBA TASK_DT_REQ 84 45975

We can see then that the task_appt_fk index needs 66 blocks
and currently is holding 175. So we could free up 109 blocks if
we rebuilt this index at the correct size. This was all done based
on the previously run statistics and without locking out any
user. I can do this at any time during the day.

Logical Steps for Resizing and Defragging
So how do we use this newfound power for good? The best
case here is that we do a complete tablespace so we can resize
and defrag the tablespace at the same time. Here are the logical
steps:

Recreate the indexes at the size based on dba_indexes in a
different tablespace. This will flush out any deleted space
within the index.
Coalesce the index tablespace
Analyze these indexes to get up-to-the-minute statistics
Recreate the indexes back into the index tablespace

Logical Steps for Resizing and Defragging 203

204 Oracle Space Management Handbook

We want an easy way to specify the indexes we are working on
for each of the steps. I normally just drop the names into a
table that will exist only for the duration of this exercise. Be
sure to drop that temporary table when you've finished. We
also pull out the block size to make the statements faster later
on:

create table t_names
storage (initial 64K next 64K pctincrease 0)
pctfree 0 pctused 80
as select owner,index_name
from dba_indexes
where tablespace_name = 'HRX';
variable block_size number
begin
select to_number(value) into :block_size
from v$parameter where name = 'db_block_size';
end;
/

Now we will spool out the analyze statement for our indexes
and run it if we know the statistics are old. This does not lock
out users:

spool c:\analyze_index.sql
select 'analyze index '||owner||'.'||index_name||' compute statistics;'
from t_names;
spool off
@c:\analyze_index

The results are as follows:

analyze index ORADBA.TASK_DT_REQ compute statistics;
analyze index ORADBA.TASK_TYPE_FK compute statistics;
analyze index ORADBA.TASK_ENC_FK compute statistics;
analyze index ORADBA.TASK_CLIENT_FK compute statistics;
analyze index ORADBA.TASK_APPT_FK compute statistics;
analyze index ORADBA.TASK_CENTER_FK compute statistics;

The next step requires that we give the owners of the indexes
we are moving, rights on the new target tablespace. You can
check dba_ts_quotas and dba_sys_privs to see if they already have
rights:

select distinct 'alter user '||owner||' quota unlimited on hrd;'
from t_names a
where not exists (select 'x' from dba_sys_privs
where a.owner = grantee and rownum =1)
and not exists (select 'x' from dba_ts_quotas
where tablespace_name = 'HRD'
and a.owner = username and rownum =1);

Here are the results:

alter user ORADBA quota unlimited on hrd;

When we have finished, we want to be sure to set the quota
back to 0 for all the owners we changed. Now the groundwork
is complete, so we can get to the command that will perform
the actual move:

spool c:\resize_new_index.sql
select 'alter index '||a.owner||'.'||a.index_name||
' rebuild tablespace hrd'||chr(10)||
' storage(initial '||
((decode(blevel
,0,0
,ceil(a.leaf_blocks/trunc(a.num_rows/a.leaf_blocks)))
+a.leaf_blocks)
*:block_size)||
' next '||a.next_extent||
' maxextents '||a.max_extents||' pctincrease 0)'||
' nologging;'
from dba_indexes a
,dba_segments b
,t_names c
where a.leaf_blocks > 0
and a.num_rows > 0
and a.owner not in ('SYS','SYSTEM')
and a.index_type != 'BITMAP'
and a.last_analyzed is not null
and a.owner = b.owner
and a.index_name = b.segment_name
and a.owner = c.owner
and a.index_name = c.index_name
order by (decode(blevel,0,0
,ceil(a.leaf_blocks/trunc(a.num_rows/a.leaf_blocks)))+a.leaf_blocks)
;
spool off

And what follows are the results:

Logical Steps for Resizing and Defragging 205

206 Oracle Space Management Handbook

alter index ORADBA.TASK_APPT_FK rebuild tablespace hrd
storage(initial 1081344 next 2097152 maxextents 1017 pctincrease 0)
nologging;
alter index ORADBA.TASK_TYPE_FK rebuild tablespace hrd
storage(initial 1228800 next 2097152 maxextents 1017 pctincrease 0)
nologging;
alter index ORADBA.TASK_DT_REQ rebuild tablespace hrd
storage(initial 1392640 next 65536 maxextents 1017 pctincrease 0)
nologging;
alter index ORADBA.TASK_CENTER_FK rebuild tablespace hrd
storage(initial 1638400 next 1048576 maxextents 1017 pctincrease 0)
nologging;
alter index ORADBA.TASK_CLIENT_FK rebuild tablespace hrd
storage(initial 1671168 next 2097152 maxextents 1017 pctincrease 0)
nologging;
alter index ORADBA.TASK_ENC_FK rebuild tablespace hrd
storage(initial 1933312 next 2097152 maxextents 1017 pctincrease 0)
nologging;

All Together Now
So we move, coalesce, analyze and move back. We have rebuilt
the indexes at the correct size and defragged the tablespace.
There was never a time when an index did not exist, and there
is no risk of dropping one. A word of caution: Users will be
impacted during the move, so you want to do this during off-
peak hours. But we don't have to lock users out just to figure
out what to do.

The initial extent is computed as the number of leaf blocks plus
the number of computed branch blocks, multiplied by the
block size. Notice that I ordered this by the size of the index.
This is based on the assumption that the larger indexes usually
have more size activity; it's also an effort to minimize future
fragmentation.

You will also notice that this ignores the empty indexes, those
with 0 rows or 0 blocks. These indexes should also be rebuilt at
1 block for the initial extent or dropped, unless you know this
index will be populated in the near future. For partition
indexes, use the same query but with dba_ind_partitions in place

of dba_indexes. The partition name must be included in the
rebuild statement.

Once this is done and in place, there is no excuse for not
knowing how big the index really should be.

All Together Now 207

208 Oracle Space Management Handbook

Oracle Partitioning
Design

CHAPTER

21
Partitioning in Oracle 9i, Release 2

Learn how to use the various partitioning methods in Oracle 9i Release 2.

This is the first part of a two-part article addressing "How To"
partition in Oracle 9i, Release 2. Part 1 will cover the basics of
partitioning and how to partition tables. Part 2 will cover the
partitioning of indexes. Part 2 will also draw together the
concepts from the entire article into real life examples.

Introduction
Oracle DBAs face an ever growing and demanding work
environment. The only thing that may outpace the demands of
the work place is the size of the databases themselves. Database
size has grown to a point where they are now measured in the
hundreds of gigabytes, and in some cases, several terabytes.
The characteristics of very large databases (VLDB) demand a
different style of administration. The administration of VLDB
often includes the use of partitioning of tables and indexes.

Since partitioning is such an integral part of VLDB the
remainder of this article will focus on how to partition,
specifically, the partitioning of tables in an Oracle 9i Release 2
environment. Part 2 of this article will focus on the partitioning
of indexes. The complete article will cover:

Partitioning Defined

When To Partition
Different Methods Of Partitioning
Partitioning Of Tables
Partitioning Of Indexes

The organization of this article is modular so you can skip to a
specific topic of interest. Each of the table partitioning
methods (Range, Hash, List, Range-Hash and Range-List) will
have its own section that includes code examples and check
scripts.

Background
This article assumes that Oracle 9i Release 2 is properly
installed and running. You will also need to have a user account
that has a minimum of Create Table, Alter Table and Drop
Table privileges. In addition to the basic privileges listed above,
the creation of five small tablespaces (TS01, TS02, TS03, TS04,
TS05) or changes to the tablespace clause will need to be done
to use the examples provided in this article.

Ideally, you should try each of the scripts in this article under a
DBA role. All scripts have been tested on Oracle 9i Release 2
(9.2) running on Windows 2000.

Partitioning Defined
The concept of divide and conquer has been around since the
times of Sun Tzu (500 B.C.). Recognizing the wisdom of this
concept, Oracle applied it to the management of large tables
and indexes. Oracle has continued to evolve and refine its
partitioning capabilities since its first implementation of range
partitioning in Oracle 8. In Oracle 8i and 9i, Oracle has

Background 209

210 Oracle Space Management Handbook

continued to add both functionality and new partitioning
methods. The current version of Oracle 9i Release 2 continues
this tradition by adding new functionality for list partitioning
and the new range-list partitioning method.

When To Partition
There are two main reasons to use partitioning in a VLDB
environment. These reasons are related to management and
performance improvement.

Partitioning offers:
Management at the individual partition level for data loads,
index creation and rebuilding, and backup/recovery. This
can result in less down time because only individual
partitions being actively managed are unavailable.
Increased query performance by selecting only from the
relevant partitions. This weeding out process eliminates the
partitions that do not contain the data needed by the query
through a technique called partition pruning.

The decision about exactly when to use partitioning is rather
subjective. Some general guidelines that Oracle and I suggest
are listed below.

Use partitioning:
When a table reaches a "large" size. Large being defined
relative to your environment. Tables greater than 2GB
should always be considered for partitioning.
When performance benefits outweigh the additional
management issues related to partitioning.

When the archiving of data is on a schedule and is
repetitive. For instance, data warehouses usually hold data
for a specific amount of time (rolling window). Old data is
then rolled off to be archived.

Take a moment and evaluate the criteria above to make sure
that partitioning is advantageous for your environment. In
larger environments partitioning is worth the time to
investigate and implement.

Different Methods of Partitioning
Oracle 9i, Release 2 has five partitioning methods for tables.
They are listed in the table below with a brief description.

PARTITIONING METHOD BRIEF DESCRIPTION

Range Partitioning
Used when there are logical ranges of
data. Possible usage: dates, part numbers,
and serial numbers.

Hash Partitioning
Used to spread data evenly over partitions.
Possible usage: data has no logical
groupings.

List Partitioning
Used to list together unrelated data into
partitions. Possible usage: a number of
states list partitioned into a region.

Composite Range-Hash Partitioning

Used to range partition first, then spreads
data into hash partitions. Possible usage:
range partition by date of birth then hash
partition by name; store the results into the
hash partitions.

Composite Range-List Partitioning

Used to range partition first, then spreads
data into list partitions. Possible usage:
range partition by date of birth then list
partition by state, then store the results
into the list partitions.

Range Partitioning
Used when there are logical ranges of
data. Possible usage: dates, part numbers,
and serial numbers.

Different Methods of Partitioning 211

212 Oracle Space Management Handbook

For partitioning of indexes, there are global and local indexes.
Global indexes provide greater flexibility by allowing indexes to
be independent of the partition method used on the table. This
allows for the global index to reference different partitions of a
single table. Local indexes (while less flexible than global) are
easier to manage. Local indexes are mapped to a specific
partition. This one-to-one relationship between local index
partitions and table partitions allows Oracle the ability to
manage local indexes. Partitioning of indexes will be the focus
of Part 2 of this article.

Detailed examples and code will be provided for each
partitioning method in their respective sections. The use of the
ENABLE ROW MOVEMENT clause is included in all of the
examples of table partitioning to allow row movement if the
partition key is updated.

Partitioning Of Tables
Range Partitioning
Range partitioning was the first partitioning method supported
by Oracle in Oracle 8. Range partitioning was probably the first
partition method because data normally has some sort of
logical range. For example, business transactions can be
partitioned by various versions of date (start date, transaction
date, close date, or date of payment). Range partitioning can
also be performed on part numbers, serial numbers or any
other ranges that can be discovered.

The example provided for range partition will be on a table
named partition_by_range (what else would I call it?). The
partition_by_range table holds records that contain the simple

personnel data of FIRST_NAME, MIDDLE_INIT,
LAST_NAME, BIRTH_MM, BIRTH_DD, and
BIRTH_YYYY. The actual partitioning is on the following
columns BIRTH_YYYY, BIRTH_MM, and BIRTH_DD. The
complete DDL for the PARTITION_BY_RANGE table is
provided in the script range_me.sql.

A brief explanation of the code follows. Each partition is
assigned to its own tablespace. The last partition is the "catch
all" partition. By using maxvalue the last partition will contain
all the records with values over the second to last partition.

Hash Partitioning
Oracle's hash partitioning distributes data by applying a
proprietary hashing algorithm to the partition key and then
assigning the data to the appropriate partition. By using hash
partitioning, DBAs can partition data that may not have any
logical ranges. Also, DBAs do not have to know anything
about the actual data itself. Oracle handles all of the
distribution of data once the partition key is identified.

The hash_me.sql script is an example of a hash partition table.
Please note that the data may not appear to be distributed
evenly because of the limited number of inserts applied to the
table.

A brief explanation of the code follows. The PARTITION BY
HASH line is where the partition key is identified. In this
example the partition key is AGE. Once the hashing algorithm
is applied each record is distributed to a partition. Each
partition is specifically assigned to its own tablespace.

Partitioning Of Tables 213

214 Oracle Space Management Handbook

List Partitioning
List partitioning was added as a partitioning method in Oracle
9i, Release 1. List partitioning allows for partitions to reflect
real-world groupings (e.g.. business units and territory regions).
List partitioning differs from range partition in that the
groupings in list partitioning are not side-by-side or in a logical
range. List partitioning gives the DBA the ability to group
together seemingly unrelated data into a specific partition.

The list_me.sql script provides an example of a list partition
table. Note the last partition with the DEFAULT value. This
DEFAULT value is new in Oracle 9i, Release 2.

A brief explanation of the code follows. The PARTITION BY
LIST line is where the partition key is identified. In this
example, the partition key is STATE. Each partition is explicitly
named, contains a specific grouping of VALUES and is
contained in its own tablespace. The last partition with the
DEFAULT is the "catch all" partition. This catch all partition
should be queried periodically to make sure that proper data is
being entered.

Composite Range-Hash Partitioning
Composite range-hash partitioning combines both the ease of
range partitioning and the benefits of hashing for data
placement, striping, and parallelism. Range-hash partitioning is
slightly harder to implement. But, with the example provided
and a detailed explanation of the code one can easily learn how
to use this powerful partitioning method.

The range_hash_me.sql script provides an example of a
composite range-hash partition table.

A brief explanation of the code follows. The PARTITION BY
RANGE clause is where we shall begin. The partition key is
(BIRTH_YYYY, BIRTH_MM, BIRTH_DD) for the partition.
Next, the SUBPARTITION BY HASH clause indicates what
the partition key is for the subpartition (in this case
FIRST_NAME, MIDDLE_INIT, LAST_NAME). A
SUBPARTITION TEMPLATE then defines the subpartition
names and their respective tablespace. Subpartitions are
automatically named by Oracle by concatenating the partition
name, an underscore, and the subpartition name from the
template. Remember that the total length of the subpartition
name should not be longer than thirty characters including the
underscore.

I suggest that, when you actually try to build a range-hash
partition table, you do it in the following steps:
1. Determine the partition key for the range.
2. Design a range partition table.
3. Determine the partition key for the hash.

4. Create the SUBPARTITION BY HASH clause.

5. Create the SUBPARTITION TEMPLATE.

Do Steps 1 and 2 first. Then you can insert the code created in
Steps 3 -5 in the range partition table syntax.

Composite Range-List Partitioning

Partitioning Of Tables 215

Composite range-list partitioning combines both the ease of
range partitioning and the benefits of list partitioning at the
subpartition level. Like range-hash partitioning, range-list

216 Oracle Space Management Handbook

partitioning needs to be carefully designed. The time used to
properly design a range-list partition table pays off during the
actual creation of the table.

The range_list_me.sql script provides an example of a composite
range-list partition table.

A brief explanation of the code follows. The PARTITION BY
RANGE clause identifies the partition key (BIRTH_YYYY,
BIRTH_MM, BIRTH_DD). A SUBPARTITION
TEMPLATE then defines the subpartition names and their
respective tablespace. Subpartitions are automatically named by
Oracle by concatenating the partition name, an underscore, and
the subpartition name from the template. Remember that the
total length of the subpartition name should not be longer than
thirty characters including the underscore.

When building a range-list partition table you may want to refer
to the steps mentioned at the end of the Composite Range-List
section. The only difference is in Step 4. Instead of "Create the
SUBPARTITION BY HASH clause" it would read, "Create
the SUBPARTITION BY LIST clause" for the range-list
partition table.

Conclusion
This is the first of a two-part article suggesting the use of
partition tables in VLDB environments. Part two of this article
will cover partition indexes. In part two both methods
(partition tables and indexes) will be brought together in real
life examples. Look for part two next month.

Oracle Partitioning
Design – Part 2

CHAPTER

22
Partitioning in Oracle 9i, Release 2 -- Part 2

Learn how to use the various partitioning methods in Oracle 9i Release 2.

This is the second part of a two-part article addressing "How
To" partition in Oracle 9i Release 2. Part 1 covers the basics of
partitioning and how to partition tables. Part 2 will cover the
partitioning of indexes. Part 2 will also draw together the
concepts from the entire article into real life examples.

Introduction
In Part 1 of "Partitioning in Oracle 9i Release 2," we learned
how to use the various table partitioning methods in the latest
release of Oracle. We will now continue on and learn about
Globally Partitioned and Locally Partitioned Indexes. We will
cover:

Background/Overview
Globally Partitioned Indexes
Locally Partitioned Indexes
When To Use Which Partitioning Method
Real-Life Example

Background
This article assumes that Oracle 9i Release 2 is properly
installed and running. You will also need to have a user account

Partitioning in Oracle 9i, Release 2 -- Part 2 217

218 Oracle Space Management Handbook

that has a minimum of Create Index, Alter Index and Drop
Index privileges. In addition to the basic privileges listed above,
the creation of five small tablespaces (ITS01, ITS02, ITS03,
ITS04, ITS05) or changes to the tablespace clause will need to
be done to use the examples provided in this article.

Ideally, you should try each of the scripts in this article under a
DBA role. All scripts have been tested on Oracle 9i Release 2
(9.2) running on Windows 2000. The examples below build off
of the examples that were used in Part 1 of this article.

Globally Partitioned Indexes
There are two types of global indexes, non-partitioned and
partitioned. Global non-partitioned indexes are those that are
commonly used in OLTP databases (refer to Figure1). The
syntax for a globally non-partitioned index is the exactly same
syntax used for a "regular" index on a non-partitioned table.
Refer to gnpi_me.sql
(http://www.dbazine.com/code/GNPI_ME.SQL) for an
example of a global non-partitioned index.

Figure 1

The other type of global index is the one that is partitioned.
Globally partitioned indexes at this time can only be ranged
partitioned and has similar syntactical structure to that of a
range-partitioned table. gpi_me.sql
(http://www.dbazine.com/code/GPI_ME.SQL) is provides
for an example of a globally partitioned index. Note that a
globally partitioned index can be applied to any type of
partitioned table. Each partition of the globally partitioned
index can and may refer to one or more partitions at the table
level. For a visual representation of a global partitioned index
refer to Figure 2.

Globally Partitioned Indexes 219

220 Oracle Space Management Handbook

Figure 2

The maintenance on globally partitioned indexes is a little bit
more involved compared to the maintenance on locally
partitioned indexes. Global indexes need to be rebuilt when
there is DDL activity on the underlying table. The reason why
they must be rebuilt is that DDL activity often causes the
global indexes to be usually marked as UNUSABLE. To
correct this problem there are two options to choose from:

Use ALTER INDEX <index_name> REBUILD;

Or use UPDATE GLOBAL INDEX clause when using
ALTER TABLE.

The syntax for the ALTER INDEX statement is relatively
straightforward so we will only focus on the UPDATE
GLOBAL INDEX clause of the ALTER TABLE statement.
The UPDATE GLOBAL INDEX is between the partition
specification and the parallel clause. The partition specification
can be any of the following:

ADD PARTITION | SUBPARTITION (hash only)
COALESCE PARTITION | SUBPARTITION
DROP PARTITION
EXCHANGE PARTITION | SUBPARTITION
MERGE PARTITION
MOVE PARTITION | SUBPARTITION
SPLIT PARTITION
TUNCATE PARTITION | SUBPARTITION

For example:

ALTER TABLE <TABLE_NAME>
<PARTITION SPECIFICATION>
UPDATE GLOBAL INDEX

PARALLEL (DEGREE #)

Locally Partitioned Indexes
Locally partitioned indexes are for the most part very
straightforward. The lpi_me.sql
(http://www.dbazine.com/code/LPI_ME.SQL) script shows
examples of this type of index. In the script, locally partitioned
indexes are created on three differently partitioned tables
(range, hash, and list). Figure 3 gives a visual representation of
how a locally partitioned index works.

Locally Partitioned Indexes 221

222 Oracle Space Management Handbook

Figure 3

Extra time should be allocated when creating locally partitioned
indexes on range-hash or range-list partitioned tables. There are
a couple reasons that extra time is needed for this type of
index. One of the reasons is a decision needs to be made on
what the index will be referencing in regards to a range-hash or

range-list partitioned tables. A locally partitioned index can be
created to point to either partition level or subpartition level.

Script lpi4cpt1_me.sql
(http://www.dbazine.com/code/LPI4CPT1_ME.SQL) is the
example for the creation of two locally partitioned indexes.
This scripts show how to create a locally partitioned index on
both a range-hash and range-list partitioned tables at the
partition level. Each of the partitions of the locally partitioned
indexes is assigned to its own tablespace for improved
performance.

When creating a locally partitioned index one needs to keep in
mind the number of subpartitions of the range-hash or range-
list partitioned table being indexed. Reason being, is that the
locally partitioned index will need to reference each
subpartition of the range-hash or range-list partitioned table.
So, for the locally partitioned index created by lpi4cpt2.me.sql
(http://www.dbazine.com/code/LPI4CPT2_ME.SQL), this
means that one index references twenty-five different
subpartitions. For a visual representation of this refer to Figure
4. Script lpi4cpt3_me.sql
(http://www.dbazine.com/code/LPI4CPT3_ME.SQL) is
provided as an example of locally partitioned index on a range-
list partition table.

Locally Partitioned Indexes 223

224 Oracle Space Management Handbook

Figure 4

Note: At this time Oracle has not implemented a
SUBPARTITION TEMPLATE clause for the creation of
locally partitioned indexes on range-hash or range-list partition
tables. This means that you need to type everything out as in
the examples in lpi4cpt2_me.sql and lpi4cpt3_me.sql.

Maintenance of locally partitioned indexes is much easier than
the maintenance of globally partitioned indexes. Whenever
there is DDL activity on the underlying indexed table Oracle
rebuilds the locally partitioned index.

This automatic rebuilding of locally partitioned indexes is one
reason why most DBAs prefer locally partitioned indexes.

When to Use Which Partitioning Method
There are five different table partitioning methods (range, hash,
list, range-hash and range-list) and three for indexes (global
non-partitioned, global partitioned and locally partitioned). So,
the obvious question is: "When do I use which combination of
table and index partitioning?" There is no concrete answer for
that question. However, here are some general guidelines on
mixing and matching table and index partitioning.

First determine if you need to partition the table.
o Refer to Part 1 of this article under "When To

Partition"
Next decide which table partitioning method is right for
your situation.

o Each method is described in Part 1 of this article
under "Different Methods of Partitioning"

Determine how volatile the data is.
o How often are there inserts, updates and deletes?

Choose your indexing strategy: global or local partitioned
indexes.

o Each type has its own maintenance consideration.
These guidelines are good place to start when developing a
partitioning solution.

Real Life Example

When to Use Which Partitioning Method 225

The "rolling window" concept of only retaining a certain
amount of data is the norm in most data warehousing

226 Oracle Space Management Handbook

environments. This rolling window can also used to archive
data from an OLTP system. For our example we will assume
that there is a twelve month rolling window.

Our example will cover the following steps:
Create a range partition table that has a locally partitioned
index.
Use "CREATE TABLE . . AS" to copy the data into a
separate table.
Archive off the table created to hold the rolled off data.
Drop last month partition.
Add new months partition.

Script example.sql is an annotated code of the example above.

Conclusion
During the course of this two part article we have covered the
"How to" of partitioning in Oracle 9i Release 2. Part 1 covered
the basics of table partitioning. Part 2 followed with
partitioning of indexes. We then brought together both
partitioning methods and evaluated when to use each method.
Near the end of this article we applied what we have learned in
a real life example. I hope that by reading this that this article
give you the basic knowledge to evaluate and use partitioning in
your next design and implementation of Oracle 9i Release 2.

Effective Segment
Partitioning – Part 1

CHAPTER

23
Perils and Pitfalls in Partitioning — Part 1

Partitioning is a favorite topic for authors, presenters, and
general DBA community, but most of the papers dwell on the
basics and fundamental concepts behind partitioning. The
invariable action of most DBAs, after learning the ropes, is to
jump into their databases with partitioning in mind. This article
describes some of the potential problems — little or non-
documented features that may create unanticipated (and
unwanted) situations to which you should be alert, and how to
resolve them. Understanding these potential problems will go a
long way in designing a proper partitioning scheme for your
database. Caution: to get the most from this article, you should
already have basic knowledge about partitioning; this article is
not a primer on that subject.

Plan Table Revisited
Before we begin, let's touch upon a very familiar table for
identifying query execution paths that's been available for a
long time — the plan_table. You've certainly been using this
table already, to identify the optimizer plan of a statement. We
will examine three specific columns in this table (four, in
Oracle9i) that are important for the partitioning option. Here is
a basic explanation of these columns.

Perils and Pitfalls in Partitioning — Part 1 227

228 Oracle Space Management Handbook

PARTITION_START When the optimizer searches a range of partitions for
data, this column indicates the PARTITION_ID of the
starting partition in that range.

PARTITION_STOP When the optimizer searches a range of partitions, this
column indicates the PARTITION_ID of the last
partition of the range.

PARTITION_ID Each step in the optimizer plan is identified by a unique
number called STEP_ID. This column displays the
STEP_ID of the step in PLAN_TABLE that decided the
beginning and ending PARTITION_IDs.

FILTER_PREDICATES The exact condition used to evaluate and arrive at the
start and stop PARTITION_IDs (9i only).

More information and explanation about these columns will be
provided later in the document along with examples.

The New Tool DBMS_XPLAN
It might be useful to describe an exciting tool available in 9i, a
new package called dbms_xplan, which is useful for querying the
plan_table data. Instead of writing a complicated SQL statement
to see the optimizer plan from the plan_table, a call to the
dbms_xplan displays the optimizer plan in a formatted fashion,
making it easier to use. To select the optimizer plan for the last
"explain plan" statement, simply use the query,

select * from table(dbms_xplan.display(format=>'BASIC'))

Using the operator TABLE() (or, performing a CAST
operation) makes the return values from the function behave
just like rows in a table so they can be queried as if being
selected from a relational table.

PLAN_TABLE_OUTPUT
--

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	NESTED LOOPS	
3	TABLE ACCESS FULL	PTEST3HA
4	TABLE ACCESS FULL	PTEST3HB
--

The display() function takes three arguments:

TABLE_NAME The name of the table in which the optimization plan is
stored; defaults to PLAN_TABLE.

STATEMENT_ID The statement ID from the plan table mentioned earlier. By
default, it takes the last ID, or NULL.

FORMAT This controls the way the display is formatted (explained
later in detail).

Let's examine the last parameter, FORMAT, which is used to
control how the output is displayed. It accepts four values as
follows:

BASIC It provides only the minimum amount of information, as in
case of the example above, similar to a query from
PLAN_TABLE directly.

TYPICAL This is the default value. It provides a variety of the
information useful for understanding how the optimizer
works for this statement. For instance, in case of partitioned
table operation, the columns PARTITION_START,
PARTITION_STOP, PARTITION_ID, and
FILTER_PREDICATES are displayed in addition to COST
for that step, the number of rows expected to be retrieved,
and number of bytes those rows may have. This provides
the information to understand statements involving
partitioned objects.

ALL This setting displays all the information displayed for the
BASIC and TYPICAL values, and also displays parallel
query operations and the related SQL statements, if those
are involved.

The New Tool DBMS_XPLAN 229

230 Oracle Space Management Handbook

SERIAL This setting gets results similar to those retrieved by the
TYPICAL setting, but the queries are explained serially even
if a parallel query will be used.

Needless to say, the BASIC setting does not provide much
information pertaining to partitioned objects, so the TYPICAL
setting is recommended. However, the BASIC setting also
widens the display. Before running the query, you should make
the line size 120 or more. Here is the an output from the same
query cited above using format=>'TYPICAL' or with no
parameters:

PLAN_TABLE_OUTPUT

--

--
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop
|

--
| 0 | SELECT STATEMENT | | 5 | 575 | 4 | |
|
|* 1 | TABLE ACCESS FULL | PTEST1 | 5 | 575 | 4 | 2 | 2
|

--

Predicate Information (identified by operation id):

1 - filter("PTEST1"."COL1"=1500)

Note: cpu costing is off

14 rows selected.

This example shows that the optimizer will search only
partitions with PARTITION_IDs from 2 to 2; i.e., it will
search only PARTITION_ID 2. The decision to search that
partition was made at STEP_ID 1, as displayed under Predicate
Information below the formatted output. The result also

mentions that the optimizer decided to select the step based on
the information provided to it from the query (or, the filter
predicate in the query COL1=1500. This kind of information is
extremely useful determining optimizer plans for partitioned
objects.

Partition Pruning or Elimination
Given this background information, let's jump into our
discussion on partitioning mysteries. The main advantage of
partitioning comes when the optimizer chooses the data in a
specific partition only, where the requested data will be found
and not all the partitions. For instance, consider a table,
SALES, partitioned on ORDER_DATE, with one partition per
quarter. When the following query is issued,

SELECT … FROM SALES
WHERE ORDER_DATE = ‘1/1/2003’

the optimizer does not go through the entire table, but only the
partition that houses the rows for the order date, which is 2003
Quarter 1. This way, full table scans are limited to a specific
partition only, saving significant I/O. When the optimizer
chooses to scan only some partitions and not all, this is known
as "partition pruning" or "elimination."

But that is a basic property of partitioning — nothing new
there. The important question is, how you can ensure that the
partition pruning or elimination has indeed occurred? You can
do so by explaining the query first and querying the
PLAN_TABLE. Consider a table created as follows:

Partition Pruning or Elimination 231

232 Oracle Space Management Handbook

create table ptest1
(
col1 number,
col2 varchar2(200),
col3 varchar2(200)
)
partition by range (col1)
(
partition p1 values less than (1001),
partition p2 values less than (2001),
… and so on
partition p9 values less than (9001),
partition pm values less than (maxvalue)
);

Now, we will insert several records into this table so that each
partition will have at least one record; then, we'll analyze the
table:

insert into ptest1
select rownum, object_type, object_name
from all_objects
where rownum < 10001;
commit;

Next, we'll examine the optimization plan for a query that will
be issued on the table PTEST1 as follows:

EXPLAIN PLAN FOR
SELECT * FROM PTEST1
WHERE COL1 = 1500;

This populates the PLAN_TABLE with the optimization plan
records. Now, we'll choose the plan using the "SELECT ..."
query. (Note: To perform the actions shown in this article, you
will be using this query a lot; you should save the query in a
script named plan.sql. The column FILTER_PREDICATES
will be found only in Oracle9i, so remove the column from this
query when running against an Oracle8i database.

select id, lpad(' ',level*1-1)||operation||' '||options||' on
'||object_name operation,
partition_start PB, partition_stop PE,
partition_id, filter_predicates
from plan_table
connect by parent_id = prior id
start with parent_id is null;

The result is as follows:

ID OPERATION PB PE PI
--- ------------------------------ -- -- ---
FILTER_PREDICATES

 0 SELECT STATEMENT on

 1 TABLE ACCESS FULL on PTEST1 2 2 1
"PTEST1"."COL1"=1500

This could have been done via DBMS_XPLAN.DISPLAY(),
too, but to make it version independent, we'll use
PLAN_TABLE. Look at the PARTITION_START and
PARTITION_STOP columns; values are both 2, indicating
that the data will be selected from partition number 2 only.
This is not expected, since the value 1500 will be available in
partition 2 only. How does the optimizer know which partition
to look for? It does so at the Step ID 1 in the optimization plan
as indicated by the column PARTITION_ID in plan_table.

Finally, we also know that the optimizer applied a filter to
retrieve rows as in the column FILTER_PREDICATES. This
explains how the optimizer came up with the plan and from
which segments it will select. This type of analysis will be most
helpful when you are testing the different partition pruning
scenarios.

Partition Pruning or Elimination 233

234 Oracle Space Management Handbook

Let's introduce another complexity to the mix —
subpartitioning. Consider a table created as follows:

create table ptest2
(
col1 number,
col2 varchar2(200),
col3 varchar2(200)
)
partition by range (col1)
subpartition by hash (col2)
subpartitions 4
(
partition p1 values less than (1001),
partition p2 values less than (2001),
and so on…
partition p9 values less than (9001),
partition pm values less than (maxvalue)
);

We will insert rows in the same manner as the example used
previously, and analyze the table. Then we will issue the query
as follows:

EXPLAIN PLAN FOR
SELECT COL2 FROM PTEST2 WHERE COL1 = 9500
AND COL2 = 'PROCEDURE';

Here, the query is forced to select from a subpartition, as the
filter is based on the partitioning as well as the subpartitioning
key. The query on PLAN_TABLE shown earlier displays the
following output:

 ID OPERATION PB PE PI
---- ----------------------------- -- -- ---
FILTER_PREDICATES
--
 0 SELECT STATEMENT on

 1 TABLE ACCESS FULL on PTEST2 38 38 1
"PTEST2"."COL1"=9500 AND "PTEST2"."COL2"='PROCEDURE'

Note the PARTITION_START column; it shows 38 — but
we don't have that many partitions. Actually, the number 38

reflects the count of subpartitions, not partitions. In this
example, the number of subpartitions in a partition is four, so
the first nine partitions in the table contain the first 36
subpartitions. The thirty-seventh and the thirty-eighth
subpartitions exist in the tenth partition. The tenth partition is
the partition PM, making the highlight subpartition the second
one under that. If you look at the query, the optimizer correctly
selected the partition PM for elimination.

Make note of this feature to avoid confusion - the
PARTITION_START and PARTITION_STOP columns also
point to subpartitions, if they are involved, not just partitions.

Partition-wise Joins
When a partitioned table is joined to another partitioned table
in such a way that partitioning keys determine the filtering, the
optimizer can determine that it does not need to search the
whole table, but just the partitions in which the data resides.
For instance, consider the table SALES range, partitioned on
the SALES_DATE column, the table REVENUE range,
partitioned on the BOOKED_DATE column, and the
partitioning schemes (the boundary values of the partitions are
the same). These tables are "equi-partitioned." If the user
queries using the following:

SELECT … FROM SALES S, REVENUE R
WHERE S.SALES_DATE = R.BOOKED_DATE
AND S.SALES_DATE = '31-JAN-2003';

then the optimizer knows that the rows returned by the
filtering condition, SALES_DATE = '31-JAN-2003' will be
found only in a single partition, the one for 2003 Quarter 1.
Since the REVENUE table is equi-partitioned, the rows also
will be found only in that table's partition for 2003 Quarter 1.

Partition-wise Joins 235

236 Oracle Space Management Handbook

So, for each row in SALES, only rows in a particular partition
in REVENUE need to be searched, not the entire table.

Next, we will examine if such a process of selection is indeed
happening. Consider two tables created as follows:

create table ptest3a
(
col1a number,
col2a varchar2(200),
col3a varchar2(200)
)
partition by range (col1a)
(
partition p1 values less than (1001),
partition p2 values less than (2001),
and so on…
partition p9 values less than (9001),
partition pm values less than (maxvalue)
);

create table ptest3b
(
col1b number,
col2b varchar2(200),
col3b varchar2(200)
)
partition by range (col1b)
(
partition p1 values less than (1001),
partition p2 values less than (2001),
and so on…
partition p9 values less than (9001),
partition pm values less than (maxvalue)
);

Note the tables have been range partitioned in an identical
manner. Next, we will insert data into both tables so that all
partitions will have at least one row, as follows:

insert into ptest3a
select rownum, object_type, object_name
from all_objects
where rownum < 10001;

insert into ptest3b
select rownum, object_type, object_name
from all_objects
where rownum < 10001;

After analyzing both tables, a user queries the tables in this
manner:

explain plan for
select count(*)
from ptest3a , ptest3b
where ptest3b.col1b = ptest3a.col1a
and ptest3a.col1a between 1500 and 1700;

and then queries from the PLAN_TABLE using the script
plan.sql, she gets

 ID OPERATION PB PE PI
---- ------------------------------ -- -- ---
FILTER_PREDICATES

 0 SELECT STATEMENT on
 1 SORT AGGREGATE on
 2 NESTED LOOPS on
 3 TABLE ACCESS FULL on PTEST3A 2 2 3
 "PTEST3A"."COL1A">=1500 AND "PTEST3A"."COL1A"<=1700
 4 TABLE ACCESS FULL on PTEST3B 2 2 4
"PTEST3B"."COL1B"="PTEST3A"."COL1A" AND "PTEST3B"."COL1B">=1500 AND
"PTEST3B"."COL1B"<=1700

Note how only partitions with ID# 2 from each table were
subjected to Full Table Scans, not the entire table; this enabled
partition-wise joins. The optimizer determined that partition-
wise joins are possible in step ID 3 and step 4, as shown in the
column PARTITION_ID. And it knew which partitions to join
from the filter predicates, easily explained in the output. Since
the rows will be found in partition ID 2 only, only that
partition of ptest3a is used. And, since ptest3a and ptest3b are
equi-partitioned, the optimizer will search for rows only in
partition ID 2 of ptest3b, too, not the entire table.

Now let's see how a different type of partitioning scheme, hash
partitioning, behaves for partition-wise joins. Consider the
following two tables:

Partition-wise Joins 237

238 Oracle Space Management Handbook

create table ptest3a
(
col1a number,
col2a varchar2(200),
col3a varchar2(200)
)
partition by hash (col1a)
partitions 4;

create table ptest3b
(
col1b number,
col2b varchar2(200),
col3b varchar2(200)
)
partition by hash (col1b)
partitions 4;

So each table has 4 hash partitions. Insert the data in the same
way as in the previous example and analyze. If we explain the
same query as we did before, and select from the plan table, we
get

 ID OPERATION PB PE PI
---- -------------------------------- -- -- --
FILTER_PREDICATES

 0 SELECT STATEMENT on
 1 SORT AGGREGATE on
 2 PARTITION HASH ALL on 1 4 2
 3 NESTED LOOPS on
 4 TABLE ACCESS FULL on PTEST3A 1 4 2
"PTEST3A"."COL1A">=1500 AND "PTEST3A"."COL1A"<=1700
 5 TABLE ACCESS FULL on PTEST3B 1 4 2
"PTEST3B"."COL1B"="PTEST3A"."COL1A" AND "PTEST3B"."COL1B" >=1500 AND
"PTEST3B"."COL1B"<=1700

Note the partition start (1) and stop (4) values, which are for all
the partitions. This query does not perform a partition-wise join;
it simply scans the entire table, even though it could have
eliminated certain partitions. The filter predicates indicate that
the optimizer knew about the rows to look for. So why didn't it
do a partition-wise join?

The problem is the way hash-partitioned tables handle joins. In
this example, the filtering condition is a range, between 1500

and 1700, not a specific value. This means the optimizer will
not be able to point to a single partition for selection of the
rows, and therefore a full-table scan is necessary. Partition-wise
joins will not occur in this case. Let's take a look at another
variation of this query:

explain plan for
select count(*)
from ptest3a , ptest3b
where ptest3b.col1b = ptest3a.col1a
and ptest3a.col1a = 1500;

Note the filtering predicate has been changed from a
"between" to an "equality" with a constant. Using the plan.sql
script, we get the "explain plan" as

ID OPERATION PB PE PI
---- -- -- -- ---
FILTER_PREDICATES

0 SELECT STATEMENT on
1 SORT AGGREGATE on
2 NESTED LOOPS on
3 TABLE ACCESS FULL on PTEST3A 3 3 3
"PTEST3HA"."COL1A"=1 500
4 TABLE ACCESS FULL on PTEST3B 3 3 4
"PTEST3HB"."COL1B"="PTEST3A"."COL1A" AN D "PTEST3B"."COL1B" =1500

The PARTITION_IDs for start and stop partitions are 3 each,
as expected. This means the third partitions of both table have
been joined to get the answer; in other words, we have just
achieved a partition-wise join. How were we able to do this?

Partition-wise Joins 239

If the filter predicates are based on equality operator only, then
the optimizer can assign a specific partition to the predicate by
using the hash function. That is why the partition-wise join was
possible in the second example, but not in the first example. If
the predicate is a range, the optimizer cannot decide whether a
particular partition may be a candidate. Be very careful in
designing hash-partitioned tables when there is a chance of
joining with range filtering.

240 Oracle Space Management Handbook

Character Value in Range Partitioning
Almost all documents, articles, books, and other documentation
talks about range partitioning using either dates (the most
common) or numbers. However, the partitioning scheme could
be extended to character strings too. Consider the example of
the employee table where the last name column is the
partitioning key, to separate employees into multiple partitions
by last name. Consider a table where the first partition P1
should hold all last names starting with C and below, P2 should
hold between D and F; finally the rest with partition PM.
According to a MetaLink Note, here is the proper syntax for
designing such a partitioning scheme.

CREATE TABLE EMP (…………)
PARTITION BY RANGE (LAST_NAME)
(
PARTITION P1 VALUES LESS THAN (‘D%’),
PARTITION P2 VALUES LESS THAN (‘G%’),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

Note the percentage character after the names. This ensures
that the ranges are well delineated by the boundaries. Consider
this example:

SELECT * FROM EMP;

LAST_NAME FIRST_NAME
---------- ----------
CHAPLIN CHARLIE
D HARLEY
DAVIDSON HARLEY
EINSTEIN ALBERT

SELECT * FROM EMP PARTITION (P1);

LAST_NAME FIRST_NAME
---------- ----------
CHAPLIN CHARLIE
D HARLEY

SELECT * FROM EMP PARTITION (P2);

LAST_NAME FIRST_NAME
---------- ----------
DAVIDSON HARLEY
EINSTEIN ALBERT

Note the placement of two rows with last names starting with
D. The last name DAVIDSON is placed in P2 as expected, but
the last name D is placed in partition P1. Shouldn't
DAVIDSON and D be within the same partition, P2?

Actually, this is not unusual. The character set comparison, "D"
is less than "D%," satisfying the boundary of the partition P1,
and that is where the last name "D" goes, even though you
probably expected the last name "D" to go into the same
partition as DAVIDSON. While designing such a partitioning
scheme be mindful of the potential problem.

Consider the same table in a slightly different way:

CREATE TABLE EMP (…………)
PARTITION BY RANGE (LAST_NAME)
(
PARTITION P1 VALUES LESS THAN (‘D’),
PARTITION P2 VALUES LESS THAN (‘G’),
PARTITION PM VALUES LESS THAN (MAXVALUE)
);

Note, there is no percentage sign after the character values.
Inserting the same data into it and selecting from different
partitions, we get

SELECT * FROM EMP2 PARTITION (P2);

LAST_NAME FIRST_NAME
---------- ----------
DAVIDSON HARLEY
EINSTEIN ALBERT
D HARLEY

Character Value in Range Partitioning 241

242 Oracle Space Management Handbook

Note how the partition P2 now has both DAVIDSON and D.
This modified approach will help you avoid potential problems
in the future. If you design character-based range partitioning,
you should consider dropping the percentage character in your
boundary to eliminate confusion, even though it is as specified
in the MetaLink Note. If you use Oracle9i, you can probably
change most of your character-based partitioning schemes to
LIST.

This article should provide some insights into some potentially
problematic situations regarding partitioning. More potential
problems and pitfalls will be discussed in the Part 2 of this
article next month.

Effective Segment
Partitioning – Part 2

CHAPTER

24
Perils and Pitfalls in Partitioning — Part 2

This is a continuation of last month's article on partitioning. In
case you haven't seen the first part, here it is. Partitioning is a
favorite topic for authors, presenters, and for the DBA
community in general, but most of the papers on this subject
dwell on the basics and fundamental concepts behind
partitioning. The inevitable action of most DBAs, after learning
the ropes, is to jump into their databases with partitioning in
mind. But not so fast. This article describes some the potential
problems with partitioning, features with little, or no,
documentation that may create unforeseen situations, and how
to resolve these. To get the most out of this article, you should
already have some basic knowledge about partitioning — this is
not a primer.

Multi-Column Partition Keys
Most documentation, articles, books, and so on, talk about a
single column as a partitioning key, but how about two or more
columns in the partitioning key? It's definitely possible, but in
such a case, how should you proceed?

Many people are under the impression that specifying more
than one column as partitioning key creates a multi-
dimensional partitioned table. For example, if you have a table
called “employee range” partitioned on (DEPTNO,
ZIPCODE), does that mean that the values of both columns

Perils and Pitfalls in Partitioning — Part 2 243

244 Oracle Space Management Handbook

are evaluated when you are deciding about the placement of the
row in a partition?

Unfortunately, the answer is - no.

The second column in the partitioning key is used only in some
special cases. Both values do not need to be satisfied for an
insert to go to a specific partition. The first column is evaluated
first; if it satisfies the condition, then the second column is not
evaluated. However, if the first column value is borderline
satisfactory, the next column is considered.

This is perhaps better explained using an example. Consider the
following:

create table ptab1

 col1 number(10),
 col2 number(10),
 col3 varchar2(20)
)
partition by range (col1, col2)
(
partition p1 values less than (101, 101),
partition p2 values less than (201, 201)
)

It is a popular perception that when a row is inserted, if the
values of col1 and col2 both are less than 101, then it goes to
partition P1; if the values are less than 201, but more than or
equal to 101, it goes to partition P2; otherwise, it goes to
partition PM. In our example, let's see which partition holds
what. Here are all the rows of the table:

select * from ptab1;
COL1 COL2 COL3
---------- ---------- ------
 100 100 rec1
 102 102 rec2
 100 102 rec3
 102 100 rec4
 101 100 rec5
 101 101 rec6
 101 102 rec7
 201 100 rec8
 201 101 rec9
 201 102 rec10

In which partitions do you think the records will be? Let's
check the first one:

select * from ptab1 partition (p1);
COL1 COL2 COL3
---------- ---------- ------
 100 100 rec1
 100 102 rec3
 101 100 rec5

Record REC1 is in partition P1 as expected. But should REC3
be in partition P1? The value of column COL1, which is 100, is
less than 101 and therefore satisfied. But COL2 is 102, and is
more than 101, the boundary value of COL2. How does COL2
end up in the P1 partition? The reason is quite simple: P1 is the
first partition, it's evaluated for the first column (COL1), the
value satisfies it, so the value of column COL2 is not even
evaluated. The record goes to P1, even though COL2 is not
satisfied.

So, if the second column, COL2, is not even considered at all
in some cases, where does it come into play and why would you
define it? Consider the record REC5, in which the COL1 value
is 101, a borderline value of that column in the partitioning key.
But in this case, the second column is considered. In this case,
COL2 value is 100, less than the boundary value of COL2 in
the partitioning key (101); therefore, it goes into the partition
P1. Look at the records in partition P2.

Multi-Column Partition Keys 245

246 Oracle Space Management Handbook

select * from ptab1 partition (p2);
COL1 COL2 COL3
---------- ---------- -----
 102 102 rec2
 102 100 rec4
 101 101 rec6
 101 102 rec7
 201 100 rec8
 201 101 rec9
 201 102 rec10

The records REC2, REC4, and REC7 satisfy both columns and
are as expected in partition P2. However, for REC6, the COL1
value is 101, which is the boundary value for first column of
the partitioning key. So, REC6 falls under the special
consideration for multi-column partitioning keys. Because the
COL2 column value of 101 is more than the boundary value of
column COL2 of partition P1 (101), the rows went to partition
P2.

In the same logic, for records REC8, REC9, and REC10, the
COL1 value is 201 — right on the boundary for the value of
that column in the partitioning key. However, the value of
COL2 is less than 201, and the boundary value of that column
in P2. Therefore, the rows went to partition P2.

What happens when you insert a row with COL1 = 201 and
COL2 = 201?

That row will go into partition PM, since both columns cannot
be outside the bounds. Schematically, the decision to insert into
a partition can be explained as in the figure below.

So what happens in the case of list partitioning in Oracle 9i,
when there is no concept of a range, so there is no boundary
value? Fortunately, list partitioning does not allow multiple
columns, so this situation does not arise.

It seems that, given the potential confusion about the
placement of rows in partitions, it's not worth pursuing the use
of multi-column partitioning keys. However, in some special
cases, it can be very useful. Consider a table called SALES, for
instance, with columns SALES_YEAR, SALES_MONTH and
SALES_DAY, instead of a single column called
SALES_DATE. This is useful in some data warehouse design
implementations to enable dimensions and hierarchies. In such
a case, you could use a partitioning key in all three columns to
effectively design the partitions.

Multi-Column Partition Keys 247

248 Oracle Space Management Handbook

Potential Pitfall: Be careful while defining multiple columns as
partitioning keys. If you must do so, use test cases exactly
around the boundary values.

Subpartition Statistics
This is one tricky part of subpartitioning, which is not well
documented and clear in the manuals. You must have been
using the DBMS_STATS package for quite some time now to
collect statistics. To collect statistics for the tables and the sub-
objects under them (e.g. , partitions and subpartitions), you
should use the function under the package named
GATHER_TABLE_STATS. The function has two, little-
known parameters that must be set for proper statistics
collection.

PARTNAME
This parameter is supposedly set to collect statistics for only
the named partition within the table, not for the entire table.
However, this is a misconception. PARTNAME can be used to
collect the stats for a specific subpartition, too. In order to do
that, the name of the subpartition is passed as this parameter.

GRANULARITY
This parameter instructs the package to collect statistics at
different levels and to cascade down to other sub-objects. It
accepts several values. The default, named DEFAULT,
instructs the package to collect global statistics and on the
partitions only. The PARTITION value instructs the package
to collect stats at the partition level. However, setting these

values will not collect stats at the subpartition level; these can be
collected by setting the parameter to ALL or SUBPARTITON.

Consider the table created as follows:

create table spart1
(
 col1 number,
 col2 number,
 col3 varchar2(20)
)
partition by range (col1)
subpartition by hash (col2)
subpartitions 4
(
 partition p1 values less than (101),
 partition p2 values less than (201),
 partition p3 values less than (301),
 partition p4 values less than (401),
 partition pm values less than (maxvalue)
)

Analyze the table using the default value of granularity as
follows:

exec dbms_stats.gather_table_stats (tabname=>'SPART1')

Note, we have not provided the granularity at all. Since the
default value is to collect stats for the partitions only, and not
for any of the subpartitions, the stats will not be collected for
the subpartitions. This can be verified by issuing:

select partition_name
from user_tab_subpartitions
where last_analyzed is not null;

This command will not return any rows. But let's analyze the
other options here. A table can have statistics at the table level
only, called GLOBAL statistics. If the partitions of the table are
analyzed and the optimizer can derive the global statistics from
the individual partitions, then the stats for the table are

Subpartition Statistics 249

250 Oracle Space Management Handbook

supposed to be derived globally. Let's examine each option in
detail:

exec dbms_stats.gather_table_stats (tabname=>'SPART1',
granularity=>'GLOBAL')

This collects stats at the global level only. The following query
confirms this.

Select last_analyzed, global_stats
From user_tables where table_name = 'SPART1';

This returns

GLO LAST_ANAL
--- ---------
YES 10-MAR-03

The presence of global stats indicates that the table has been
analyzed as a whole, but the optimizer will not know the stats
of individual partitions. This can be gathered using:

exec dbms_stats.gather_table_stats (tabname=>'SPART1',
granularity=>'PARTITION')

This command sets the stats at the partition level only. In this
case, the global stats are not collected on the table, and the
query above will return a NO under GLOBAL_STATS.
However, the query

select partition_name, last_analyzed
from user_tab_partitions
where last_analyzed is not null;

will retrieve all the partitions. Another variation of the package
is shown below.

exec dbms_stats.gather_table_stats (tabname=>'SPART1',
granularity=>'SUBPARTITION')

This collects stats on the subpartition level only, and infers the
stats on the partition level; however, it does not collect global
stats on the partitions itself.

The last value of the option, ALL, performs all of these —
collects partition-level, and subpartition level stats, as well as
the global stats on the subpartition, partition, and table.

Thus, the default value for the granularity parameter in the stats
gathering function does not collect stats on subpartitions; you
must set it to either SUBPARTITION or ALL to gather stats.

In summary, here are the details about setting granularity and
collecting statistics:

GRANULARITY TABLE
GLOBAL

PARTITION
GLOBAL

PARTITION
STATISTICS

SUB-
PARTITION
STATISTICS

GLOBAL YES NO NO NO
PARTITION NO YES YES NO
DEFAULT YES YES YES NO
SUBPARTITION NO NO YES YES
ALL YES YES YES YES

Another interesting concept that is not documented clearly is
the option to analyze subpartitions only. This can be done
using:

exec dbms_stats.gather_table_stats (tabname=>'SPART1',
PART_NAME=>'P1_SYS123')

This will collect subpartition-level stats on subpartition
P1_SYS123 only.

Subpartition Statistics 251

252 Oracle Space Management Handbook

Rule Based Optimizer
Can you use partitioning with Rule Based Optimizer (RBO)?
The answer is, of course you can. However, when partitioning
was introduced, RBO was considered legacy, and Oracle
decided to gradually phase out support for it. This led to a
general stop in development of RBO, so today, RBO is not set
up to exploit several exciting developments, partitioning
included. Therefore, to get the full advantage of partitioning
(partition pruning, partition-wise joins, and so on), you must
use the Cost Based Optimizer (CBO). If you use the RBO, and
a table in the query is partitioned, Oracle kicks in the CBO
while optimizing it. But because the statistics are not present,
the CBO makes up the statistics, and this could lead to severely
expensive optimization plans and extremely poor performance.

So, although you can, you shouldn't use partitioning when using
the RBO.

Coalesce vs. Merge
These two potentially confusing statements serve the same
purpose — reducing the number of partitions – and are
applicable in different schemes. In a range- or list-partitioned
table, the partition boundaries are clearly defined, and the rows
in a partition satisfy some condition dependent on the
boundary values. ALTER TABLE … MERGE PARTITION
joins the two adjacent partitions and sets the boundary values
appropriately.

Consider the example of a table PART that is partitioned by
range into four different partitions named P1, P2, P3, and P4.

To merge partitions P3 and P4 to make a partition called P34,
issue the following statement:

ALTER TABLE PART MERGE PARTITIONS P3, P4 INTO PARTITION P34;

However, in hash-partitioned tables, there are no boundary
values, and the rows are not decided as candidates for the
partitions based on some kind of defined range. So, a merge
will not be able to identify and set specific boundaries. You
should use a new clause called COALESCE to achieve this
objective:

ALTER TABLE PART COALESCE;

In COALESCE, a specific partition, usually the last one, is
identified for elimination. All the rows in that partition are
supposed to be equally distributed over the remaining
partitions and the partition is dropped. In practice, however,
the rows are merged with the adjacent partition.

Since this reduces the number of partitions by one, the total
number is not a power of two any more, making the
distribution of rows in all partitions unequal. To avoid this
problem, issue the COALESCE one more time to make the
partitions evenly loaded.

In summary, MERGE is for range and list partitioning when
the values are clearly identified for boundary values, and
COALESCE is for hash partitions, to reduce the number of
partitions.

Coalesce vs. Merge 253

254 Oracle Space Management Handbook

Other Questions
What about Rebuild Partition and Global Indexes?
Oracle9iR2 now offers fast split partitioning. Typically, during a
split operation, Oracle creates two new partitions and then
redistributes the rows from the source partition to the new
partitions. This is a very expensive operation from the resource
consumption point of view. In addition, local index partitions
become unusable.

With fast split partitioning, if all the rows will exist in the same
partition after the partition split, Oracle simply reuses the old
partition and creates an empty partition. Thus, a split action
becomes more like a complete operation that just creating a
new partition.

Global indexes become unusable when a partition is rebuilt.
However, in 9i, a new clause updates the global indexes as well.

ALTER TABLE PTAB DROP PARTITION P2 UPDATE GLOBAL INDEXES;

While using partitioning, should you use bind
variables?
This is an interesting question. As we all know, use of bind
variables eliminates the need to parse the cursors and makes it
easier to reuse the cursors.

In case of partitions, however, using bind variables poses a
problematic situation. Partition elimination and joins can occur
only if the optimizer knows the filtering predicate in advance.
The value of bind variables are not known until it's time to

execute, making the process of partition elimination or joins
impossible. Therefore, to take advantage of these options, you
should not use bind variables.

In Oracle 9i, the first parse of the statement, called hard parse,
peeks into the value of the bind variable, and can effect these
optimization options. But this occurs only with the hard parse;
subsequent parses still go around the bind variable values.

How many partitions can be defined on a table?
Oracle uses a two-byte field to store the number of segments
(partitions or subpartitions), which enables 2^16 or 65536
spaces. The Oracle code, therefore, allows one fewer than this
number — 65535. Note that this is a limit set by Oracle
software code; an actual limit may be lower.

Remember, every time a query is parsed on a partitioned object,
the metadata (i.e., how many partitions, and so on) is loaded
into the cursor cache in SGA, meaning the SGA should be
large enough to handle a table with several partitions.

Other Questions 255

256 Oracle Space Management Handbook

Multi-Master
Replication

CHAPTER

25
A Four-phase Approach to Procedural Multi-master
Replication

Introduction
Do you support customers whose databases are updated by
users in multiple locations and across multiple time zones? If
so, the challenge for the DBA is how best to manage replicated
systems that allow for fast database access over Wide Area
Networks.

In many shops, popular failover solutions include Real
Application Clusters (RAC) and Oracle9i Dataguard. An
alternate solution, however, is growing in popularity: Oracle
advanced replication — specifically, procedural multi-master
replication.

With Oracle multi-master replication, you can implement peer-
to-peer replication of all master tables, anywhere in the world.
You can update any master site by propagating changes, either
synchronously or asynchronously, and apply those changes
directly to all other master tables. In addition to providing fast
database access across your WAN, multi-master replication also
provides solutions for failover and load-balancing issues.

What’s the catch? Multi-master replication is extremely
sophisticated and complex process. You can configure an

almost infinite array of multi-master replication models, each
adhering to its own set of conflict resolution and refresh rules.
You may have heard that advanced replication implementations
are notoriously difficult to configure, and they are. Large
Oracle shops may spend hundreds of hours configuring and
testing a worldwide multi-master replication solution, and many
have a dedicated DBA whose sole job is to monitor and
maintain the multi-master replication. In the long run, however,
the investment in time and resources is worth the extra effort.

In this article, I’ll present several reasons why multi-master
replication is popular for geographically distributed systems.
For those of you who are new to the basic concepts of multi-
master replication, I’ll present a high-level explanation of how
it works, including code samples. Then we’ll look at a four-
phase plan for implementing procedural multi-master
replication. Finally, I’ll tell you where to find three pre-defined
PL/SQL packages from Oracle that help define multi-master
replication.

Why Consider Oracle Multi-master Replication?
There are a couple of reasons why Oracle multi-master
replication is so popular for geographically distributed systems.
Perhaps the most important reason is that it provides multiple-
node replication capabilities. This may seem obvious, but you
must remember that one-way read-only snapshots are far easier
to create and maintain than a multi-master scheme.

The other benefit of multi-master replication is the ability to
replicate stored procedures. In a system where all code is
encapsulated inside Oracle stored procedures, you can replicate
the stored procedures to remote sites, just like data. This
capability allows the DBA to coordinate code changes with

Why Consider Oracle Multi-master Replication? 257

258 Oracle Space Management Handbook

database changes. Once the Oracle stored procedures are
written, you can easily replicate and distribute them to work
groups and branch offices throughout the entire replicated
network of systems.

Oracle Multi-master Replication
I’ll start with a high-level view of multi-master replication and
introduce some basic concepts. Multi-master replication is such
a complex topic that I can’t fully address every issue about it in
this space. However, I hope you’ll be happy with a conceptual
explanation of the mechanisms.

In a nutshell, multi-master replication is nothing more than a
coordinated set of updateable snapshots. By “updateable,” I
mean that the snapshot allows the FOR UPDATE clause in the
snapshot definition. To illustrate this concept, refer to the
example below, where you’ll see that the snapshot is allowed to
propagate updates back to the master table.

create snapshot
 customer_updatable_snap
refresh fast start with sysdate
next sysdate + 1/24
for update
query rewrite
 as
 select * from customer@master_site;

Multi-master Conflicts and Resolutions
At first blush, multi-master replication may appear
straightforward. However, there is a dark side to the process.
Whenever a snapshot has the ability to send updates to other
“master” tables, you always run the risk of update conflicts. So
what’s the best way to avoid and/or resolve those conflicts?
Let’s start the lesson by reviewing multi-master conflict

avoidance. Then we’ll dive head-first into the details of
procedural replication, so we can see how it all fits together.

An update conflict occurs when one remote user overlays the
updates made by a user on another database. Your multi-master
replication model should detect and resolve conflicts.
Unfortunately, detecting and resolving those conflicts can get
extremely complex. Let’s start by looking at what conflicts can
occur, and then we’ll look at mechanisms for resolving them.

Conflict Types
Here are the most common types of conflicts you’ll encounter
with multi-master replication:

Uniqueness conflict — This conflict results from an attempt
from two different sites to insert records with the same
primary key. To avoid uniqueness conflicts, you can choose
from three available options. Those three pre-built methods
are called Append Site Name To Duplicate Value, Append
Sequence To Duplicate Value, and Discard Duplicate Value.
Update conflict — This conflict is caused by simultaneous
update operations on the same record.
Delete conflict — This type of conflict occurs when one
transaction deletes a row that another transaction updates
(before the delete is propagated).

Oracle provides several pre-written scripts to help in resolving
conflicts. In the case of update conflicts, your only option is to
write conflict-resolution routines, and deal with each conflict
on a case-by-case basis. Fortunately, Oracle provides several
pre-built methods for creating the routines

Multi-master Conflicts and Resolutions 259

260 Oracle Space Management Handbook

Conflict Resolution Mechanisms
Here are the most common mechanisms at your disposal for
resolving conflicts:

Latest Timestamp Value. With this simple technique, you
apply updates as they are received. Based on timestamp
value, the most recent updates overlays prior updates. This
approach can result in situations where one user’s update
gets overlaid by a more recent update.
Earliest Timestamp Value. This mechanism is the opposite
of the latest timestamp value, in that the first update
overlays subsequent updates. As you’d expect, not many
shops use this method, but it is an option.
Minimum and Maximum Value. This mechanism may be
used when the advanced replication facility detects a conflict
with a column group. The advanced replication facility calls
the minimum value conflict resolution method and then
compares the new value from the originating site with the
current value from the destination site for a designated
column in the column group. You must designate that
column when you select the minimum value conflict
resolution method.
Additive and Average Value. When you’re dealing with
replicated numeric values, this additive method adds a new
value to the existing value using the following formula:
(current value = current value + (new value - old value)).
The average method averages the conflicting values into the
existing value using the formula (current value = (current
value + new value)/2).
Groups priority Value. Using this method, some groups
have priority (a higher rank) over other groups. Therefore,

the update associated with the highest-ranked group gets
the update.
Site Priority Value. In this method, all master sites are NOT
created equal. Some remote sites will have priority over
other sites.

To illustrate how conflict resolution is defined, consider the
example below. In this code, we execute
dbms_repcat.add_update_resolution to direct Oracle to use the
“latest timestamp” method for conflict resolution for updates
to the EMP table.

execute dbms_repcat.add_update_resolution(-
 sname => 'SCOTT', -
 oname => 'EMP', -
 column_group => 'EMP_COLGRP', -
 sequence_no => 1, -
 method => 'LATEST TIMESTAMP', -
 parameter_column_name => 'EMPNO');

At this point, you should be starting to appreciate the
complexity of conflict resolution in multi-master replication.
Now let’s take a quick look at the techniques you can use to
define procedural multi-master replication.

Implementing Procedural Multi-master Replication
Although Procedural multi-master replication is an extremely
complex process, you can break down the basic steps for
defining procedural replication into four phases:

Phase I: Pre-configuration. (Set-up Oracle parameters and
catalog scripts.)
Phase II: Define the repadmin user and database links.
Phase III: Create master database and refresh groups.
Phase IV: Monitor the replication environment.

Implementing Procedural Multi-master Replication 261

262 Oracle Space Management Handbook

Let’s take a close look at each phase in turn.

Phase I: Pre-configuration Steps for Multi-master
Replication
Before you’re ready to define a multi-master replication
environment, there’s a short checklist you need to deal with up
front. For every site that will be participating in the replication,
you must check the values of these parameters:

Oracle parameters minimum settings
o shared_pool_size=10m
o global_names=true
o job_queue_processes=4

To check those values, run this script on your database:

select
 name,
 value
from
 v_$parameter
where
 name in (
 'job_queue_processes',
 'global_names',
 ‘shared_pool_size’);

You also must be sure that the following dictionary scripts
have been run from ORACLE_HOME/rdbms/admin. The
catalog.sql was run when you created your instance, and the
catproc.sql script is for the procedural option in Oracle.

o catalog.sql
o catproc.sql

Phase II: Set-up REPADMIN User and Database Links
The following illustrates some of the main steps you’ll follow in
pre-creating the REPADMIN users and the required database
links for multi-master replication. You should review these
steps with great care.

REM Assign global name to the current DB
alter database rename global_name to PUBS.world;
REM Create public db link to the other master databases
create public database link NEWPUBS using 'newpubs';
REM Create replication administrator / propagator / receiver
create user
 repadmin
identified by
 repadmin
default tablespace
 USER_DATA
temporary tablespace
 TEMP
quota unlimited on
 USER_DATA;
REM Grant privileges to the propagator, to propagate changes to remote
sites
execute dbms_defer_sys.register_propagator(username=>'REPADMIN');
REM Grant privileges to the receiver to apply deferred transactions
grant execute any procedure to repadmin;
REM Authorize the administrator to administer replication groups
execute dbms_repcat_admin.grant_admin_any_repgroup('REPADMIN');
REM Authorize the administrator to lock and comment tables
grant lock any table to repadmin;
grant comment any table to repadmin;
connect repadmin/repadmin
REM Create private db links for repadmin
create database link newpubs
 connect to repadmin identified by repadmin;
REM Schedule job to push transactions to master sites
REM This will replicate every minute
execute dbms_defer_sys.schedule_push(-
 destination => 'newpubs', -
 interval => 'sysdate+1/24/60', -
 next_date => sysdate+1/24/60, -
 stop_on_error => FALSE, -
 delay_seconds => 0, -
 parallelism => 1);
REM Schedule job to delete successfully replicated transactions
execute dbms_defer_sys.schedule_purge(-
 next_date => sysdate+1/24, -
 interval => 'sysdate+1/24');
REM Test the database link
select global_name from global_name@newpubs;

Implementing Procedural Multi-master Replication 263

264 Oracle Space Management Handbook

Phase III: Create the Master Database and Refresh
Groups
Once the repadmin user and the links are in place, you’re ready
to define the replication. Again, this is an extremely complex
process. However, the following script will provide you with
the general steps to get the work done.

connect repadmin/repadmin

REM Create replication group for MASTERDEF site
execute dbms_repcat.create_master_repgroup('MYREPGRP');

REM Register objects within the group
execute dbms_repcat.create_master_repobject('SCOTT', -
 'EMP', 'TABLE', gname=>'MYREPGRP');

execute dbms_repcat.make_column_group(-
 sname => 'SCOTT', -
 oname => 'EMP', -
 column_group => 'EMP_COLGRP', -
 list_of_column_names => 'EMPNO');

execute dbms_repcat.add_update_resolution(-
 sname => 'SCOTT', -
 oname => 'EMP', -
 column_group => 'EMP_COLGRP', -
 sequence_no => 1, -
 method => 'LATEST TIMESTAMP', -
 parameter_column_name => 'EMPNO');

REM Add master destination sites
execute
 dbms_repcat.add_master_database(-
 'MYREPGRP', -
 'TD2.world');

REM Generate replication support for objects within the group
execute
 dbms_repcat.generate_replication_support(-
 'SCOTT', -
 'EMP', -
 'table');

Dropping Multi-master Replication

As you’d expect, there will be instances when you may need to
turn-off multi-master replication. Some of the obvious cases
include database maintenance activities such as upgrades and
reorganizations. You can use this sample script to disable multi-
master replication.

connect repadmin/repadmin

REM Stop replication
execute dbms_repcat.suspend_master_activity(gname=>'MYREPGRP');

REM Delete replication groups
-- execute dbms_repcat.drop_master_repobject('SCOTT', 'EMP',
'TABLE');
execute dbms_repcat.drop_master_repgroup('MYREPGRP');
execute dbms_repcat.remove_master_databases('MYREPGRP',
'newpubs.world');
REM Remove private database links to other master databases
drop database link newpubs.world;

connect sys
REM Remove the REPADMIN user
execute
 dbms_defer_sys.unregister_propagator(username=>'REPADMIN');

execute

dbms_repcat_admin.revoke_admin_any_schema(username=>'REPADMIN')
;
drop user repadmin cascade;
REM Drop public database links to other master databases
drop public database link newpubs.world;

Phase IV: Monitoring Multi-master Replication
The final phase of implementing multi-master replication
involves monitoring. A variety of dictionary views provide the
key to monitoring complex multi-replication processes. I
cannot stress enough the importance of checking these views
on every database in the multi-master network.

dba_repschema. This view contains details for the replication
schema

Implementing Procedural Multi-master Replication 265

266 Oracle Space Management Handbook

dba_repcatlog. This view provides a log of all replication
activities.
dba_jobs. Use this view to monitor all scheduled job in the
database.
dba_repcat. This view shows the replication catalog.
all_repconflict. This view provides a list of all replication
conflicts.
all_represolution. For systems defined with pre-defined
conflict resolution, this view lists the resolution of every
conflict.
dba_repobject. This view gives you a list of al replicated
objects.
dba_repsites. This view provides is a list of replicated sites.

At this point, you’ll want to closely review the following script,
which is the one most commonly used to monitor procedural
replication. Of course, you must run this script on each remote
database.

connect repadmin/repadmin
set pages 50000
col sname format a20 head "SchemaName"
col masterdef format a10 head "MasterDef?"
col oname format a20 head "ObjectName"
col gname format a20 head "GroupName"
col object format a35 trunc
col dblink format a35 head "DBLink"
col message format a25
col broken format a6 head "Broken?"
prompt Replication schemas/ sites
select
 sname,
 masterdef,
 dblink
from
 sys.dba_repschema;
prompt RepCat Log (after a while you should see no entries):
select
 request,
 status,

 message,
 errnum
from
 sys.dba_repcatlog;
prompt Entries in the job queue
select
 job,
 last_date,
 last_sec,
 next_date,
 next_sec,
 broken,
 failures,
 what
from
 sys.dba_jobs
where
 schema_user = 'REPADMIN';
prompt Replication Status:
select
 sname,
 master,
 status
from
 sys.dba_repcat;
prompt Returns all conflict resolution methods
select * from all_repconflict;
prompt Returns all resolution methods in use
select * from all_represolution;
prompt Objects registered for replication
select
 gname,
 type||' '||sname||'.'||oname object,
 status
from
 sys.dba_repobject;
select * from dba_repsites;

Resources for Defining Multi-master Replication
When it comes to defining multi-master replication for your
shop, you don’t have to start from scratch. Oracle offers the
following pre-defined PL/SQL packages that can assist you:

dbms_repcat package — This complex package provides over
50 stored procedures. Follow this link for a listing of the
procedures in dbms_repcat
(http://www.csis.gvsu.edu/GeneralInfo/Oracle/appdev.92
0/a96612/d_repcat.htm#93762).

Resources for Defining Multi-master Replication 267

268 Oracle Space Management Handbook

dbms_reputil package — This package contains several stored
procedures. Here is a list of the procedures in dbms_reputil
(http://www.csis.gvsu.edu/GeneralInfo/Oracle/appdev.92
0/a96612/d_reputl.htm).
dbms_defer_sys package — This collection contains 19
replication procedures. Here is a list of the procedures in
dbms_defer_sys
(http://www.csis.gvsu.edu/GeneralInfo/Oracle/appdev.92
0/a96612/d_defsys.htm).

Conclusion
In this brief introduction it is impossible to provide a
comprehensive overview of this powerful utility. Rather, the
intent of this article was to provide a simple overview of the
important concepts and illustrate how multi-master replication
is used within a distributed Oracle environment.

References
Constraints on updatable snapshots -
http://www.orafaq.com/papers/rep8cons.doc

Oracle advanced replication setup & design tips -
http://oracle.ittoolbox.com/browse.asp?c=OraclePeerPublishi
ng&r=/pub/DS071702.pdf

Oracle FAQ - Oracle advanced replication scripts -
http://www.orafaq.com/faqscrpt.htm#ADVREP

Oracle Magazine – "The Best Strategy for Disaster Recovery:
Multi-Master Asynchronous Replication"

Oracle replication solutions -
http://www.dbasupport.com/oracle/ora9i/ors.shtml

Oracle8i advanced replication -
http://www.dbasupport.com/oracle/ora9i/ors.shtml

Oracle9i documentation - conflict resolution techniques -
http://www.engin.umich.edu/caen/wls/software/oracle/serve
r.901/a87499/repconfl.htm

Oracle9i Replication API documentation -
http://www.csis.gvsu.edu/GeneralInfo/Oracle/server.920/a9
6568/toc.htm

OracleNotes.com – Oracle8i advanced replication -
http://www.oraclenotes.com/Articles/Advance
Replication.ppt

Using updatable snapshots -
http://www.dbasupport.com/oracle/ora9i/snapshots.shtml

References 269

270 Oracle Space Management Handbook

Replication
Management

CHAPTER

26
Automated Replication Management

When and why did the replication fail? How many rows where
updated at 3:25 am? If we load 100,000 new rows, how long
will it take to replicate them all? Can the system handle this, or
do we have to split it into smaller batches? Here is a PL/SQL
package, which brings an automated solution to help with a
number of replication problems like these.

The solution has been used on Unix (HP-UX 10.7/11, Sun
Solaris 7/8, AIX 4, Linux 2) and Windows servers (NT4, 2000),
on Oracle 7.3.x, 8.0.x, 8.1.x, 9.x. It requires some knowledge of
UNIX shell scripts, SQLPlus scripts, and PL/SQL. However,
full scripts are provided and minimal knowledge should be
enough to start.

Basic Replication
Although advanced replication has been available for quite a
while and has started to be used significantly, basic replication
of simple materialized views (snapshots) with fast refreshes is
still very much used in a very large number of installations for
one-way transfers of information (mostly for production to
data warehouse feeds, or for production to business-
intelligence and web-enabled databases transfers, for central
site to branches updates, for one database to another database
updates, etc.).

Basic replication is the process of creating/maintaining a read-
only copy (replica) object (table) in a local (secondary, slave)
database, based on a read-write master object (table) in a
remote (primary, master) database. The site hosting the master
database is also called a "master site", and the site hosting the
replicated schemas is called a "snapshot site". The replica,
which is called a "materialized view" or a "snapshot", is built
with a query very similar to a view. If the query references just
one master table, and is simple enough the result is a SIMPLE
SNAPSHOT. If the query references more master tables
and/or contains DISTINCT or AGGREGATE functions,
GROUP BY or CONNECT BY clauses, or some restricted
types of SUBQUERIES, or JOINS, or SET OPERATIONS,
then the result is a COMPLEX SNAPSHOT.

Only simple materialized views support FAST refreshes,
complex materialized views have to be used with slower
COMPLETE refreshes. If the snapshot log is not created, the
system can perform only COMPLETE refreshes; if the refresh
attempts the FAST method, it will fail. Only one snapshot log
is possible per master table, even if several materialized views
(from several slave schemas/databases) are referencing it.

See the comments in the install-replisvs.sql
(http://www.dbazine.com/code/install-replisys.sql.txt) script
(under P_RUN_SESSION) for a summary of the data
dictionary changes in basic replication. (You can also see my
article, "Diagnosing Oracle Replication Timings" in Oracle
Internals, November 2002, for more details.)

Note: These are not documented facts, but conclusions
inferred from studying a large amount of collected data in a
replication environment! Most of them are based on the data
dictionary base tables and are liable to change over Oracle

Basic Replication 271

272 Oracle Space Management Handbook

versions. However, the package will continue to run correctly if
the DBMS_REFRESH.REFRESH('group_name') command
will remain unchanged; only some of the values in the
associated tables might look strange.

Automated Replication Management
Our strategy was a combination of scheduled jobs (via crontab,
etc. and/or DBMS_JOB) and a PL/SQL package
(PKG_REPLISYS). Running the package takes up to 100 MB
of memory and up to 20% CPU. The resource consumption is
basically the same if the replication is run via the package or
not. Space consumption is negligible.

Prerequisites
you should have some system privileges (see the beginning
of the install-replisys.sql
(http://www.dbazine.com/code/install-replisys.sql.txt)
script
set utl_file_dir = * (or at least c:\temp, or /tmp, etc.) in
init.ora, in order to allow log files to be created
set job_queue_processes = 5 (or higher) in init.ora, in order to
allow DBMS_JOB scheduling to work
set global_names = FALSE in init.ora, in order to successfully
run the creation of the test environment
Unix user "oracle" should be allowed to write to '/tmp'
tnsnames.ora entries to allow communications between the
two databases (via database links)
the package is installed on the snapshot site, and an MHSYS
user has to exist in both databases

Associated Tables
Two identical tables (replisys_list and replisys_hist) hold
identifying, processing and historical information. Some
columns have values from the data dictionary, other columns
contain calculated values.

Overview of the Package
The main problems that this solution addresses are:

Oracle built-in replication packages do not record a failures
history
these packages do not record a performance history to be
used for growth monitoring and capacity planning
these packages do not raise exceptions in case of failure and
only the server engine generates error messages

The Automated Snapshot Refresh package (PKG_REPLISYS)
runs the DBMS_REFRESH.REFRESH('group_name')
command and will also:

record and calculate numbers and types of changes that
need to be processed
changes will include total/deletes/inserts/updates
check that these changes have actually been processed
record and calculate times for processing
times will include session durations and statistically
estimated snapshot refresh duration
establish a performance baseline
generate alerts if it detects high variations from the baseline
generate alerts if it detects other errors

Automated Replication Management 273

274 Oracle Space Management Handbook

detect and record some generic unavailability conditions
try to overcome the limitation of the DBMS_REFRESH
package of not raising exceptions

Initially, we build a few tables (see section ASSOCIATED
TABLES), then we populate them with data from the data
dictionary and calculated from running the package, with
information about the processable objects (materialized views),
which are sorted by group number. Based on a series of rules,
the system then decides which object is assigned to which
session. It starts with the first session, collects stats, runs the
refresh command and collects stats again. The process
continues until all objects in the session are processed. Then it
records the session in the history table.

By repeating the process regularly the history table is populated
with values that can be later used for various statistics,
comparisons, performance troubleshooting, growth
monitoring, capacity planning, etc. After a while you will know
what are normal values for your system and use that as a
baseline performance indicator.

When all sessions are done, we can examine the logs in the
/tmp or c:\temp directories or in the history table. If there is
no parameter in calling the package, the file based log will be
generic and contain messages for all groups. If parameters are
used in calling the package, numbered log files are created, with
messages only for that particular group.

Upon completion, an email message can be sent to the DBA,
or a grepping process can scan the logs and send an exit
code/message to the operators, and the process is ready to start
again.

When run manually in an SQLPlus session, display procedures
ensure that debugging and detailed logging are made as easy as
possible - currently many of these modules are commented out
to avoid crashing the package because of overloading the server
output buffer - uncomment them selectively.

Although it will not account for all situations, the package does
log a wide variety of errors. The DBA will treat errors manually
as the automated system will only try to re-run a session in case
of failure. Some errors, like "ORA-12203: TNS: unable to
connect to destination", which means the other database is not
available, can be ignored, as it will probably clear on the next
run (or you may have to page the DBA in charge of that
database). Also, objects dropped after the list was created will
cause benign errors. If the package is run automatically with
'DBMS_JOB', we get only a summary output
(http://www.dbazine.com/code/DB2-REPLIsysPKG.log.txt),
which can also include error messages.

Setup
The package is installed under the default Oracle user
'MHSYS', which I use to host my automation packages. It can
be installed, as is, for Unix- and NT-based servers. It is a pretty
comprehensive piece of software, which is compatible with
Oracle 7.3.4 and later, on both UNIX and NT, and includes
routines to detect the current OS, Oracle version and SID. It
was successfully used on Oracle 7.3.4, 8.0.5, 8.0.6, 8.1.5, 8.1.6,
8.1.7, 9.0.1. It was also run successfully between databases of
different versions.

It was run against tables of sizes up to 100,000,000 rows and
5GB. Sessions can vary between 1-60 minutes, depending on

Automated Replication Management 275

276 Oracle Space Management Handbook

how often the refresh occurs and how large the refresh is. You
should have the logs emailed to you or, at least, examine them
manually. A grepping process can scan the logs for errors and
issue exit codes for monitoring tools.

The code is amply commented. Run the install-replisys.sql
(http://www.dbazine.com/code/install-replisys.sql.txt) script
as user 'SYSTEM' from SQLPlus. Before installing, read the
top of the package body, just in case you need to make some
modifications. This section can also be used for tuning later, by
changing the values of the constants. The defaults will cover
most situations and, most likely, nothing will need to be
changed. The install script can be run as is for Unix and NT
based servers.

The code (2000 lines) performs a lot of error checking and
decision-making in support of the refresh commands. Since
you may want to run the refreshes in parallel for several groups,
it accepts as parameter the group number or name and runs
only one group per session, but more sessions simultaneously.
If no parameter value is supplied, it will process all groups one
by one, serialized. When supplied with a wrong group number
or name, it exits with a message. Accepted commands are listed
in the script
pkg_exec.sql.(http://www.dbazine.com/code/pkg_exec.sql.txt)

You can use scripts to schedule or run the package, and to
email the logs, similar to the ones described in my article
"Automated Cost Based Optimizer" (Oracle Magazine Online -
Sept 2000). For a list of Frequently Asked Questions and tips
on running my packages, visit www.hordila.com/mhwork.htm.

Test Environment
The script cre-test-replication.sql
(http://www.dbazine.com/code/cre-test-replication.sql.txt)
will create a test replication environment for you to try this
solution. To use the script, run it as is, interactively, or find and
replace in the script "DB1" (master site) and "DB2" (snapshot
site) with your test database names. This script will delete and
recreate jobs with numbers: 301, 302, 303 in DB1, and 311,
312, 313 in DB2. The last section of the creation assumes that
the package PKG_REPLISYS and associated objects have
been already installed. This environment includes:

in DB1 - one MHSYS schema (password MHSYS) for data
dictionary queries for the package
in DB2 - one MHSYS schema (password MHSYS) for the
Replication Management Package PKG_REPLISYS
in DB1 - 3 schemas (SNAPTEST1, SNAPTEST2,
SNAPTEST3) - for the master tables
in DB2 - 3 schemas (SNAPTEST1, SNAPTEST2,
SNAPTEST3) - for the materialized view
in DB1 - 6 master tables (TABLE1, TABLE2, …) - 3 with
rowid, 3 with primary key - for each schema
in DB1 - a total of 18 master tables per environment - 9
with rowid, 9 with primary key based replication
in DB1 - 3 procedures to do inserts/deletes/updates
automatically for each master table
in DB2 - 6 materialized views (TABLE1R1, TABLE2R1,
…) replicating from SNAPTEST1 to SNAPTEST1
in DB2 - 6 materialized views (TABLE1R2, TABLE2R2,
…) replicating from SNAPTEST2 to SNAPTEST2

Test Environment 277

278 Oracle Space Management Handbook

in DB2 - 6 materialized views (TABLE1R1, TABLE2R3,
…) replicating from SNAPTEST3 to SNAPTEST3
in DB2 - a total of 6 snapshots in 1 refresh group per user,
and a total of 18 snapshots per environment
in DB2 - a total of 3 groups with 6 materialized views each
per environment
we do not use the Oracle users (common replication
administrators) REPADMIN and SNAPADMIN

The script count_items_to_refresh.sql
(http://www.dbazine.com/code/count_items_to_refresh.sql.tx
t) from the snapshot site, finds the numbers of rows to be
replicated. Run it after running the PKG_REPLISYS at least
once, which creates automatically the correct database links.

Replication Master
Table

CHAPTER

27
Altering the Master Table in a Snapshot
Replication Environment without Recreating the
Snapshot

Learn how to alter a master table in a read only or read write
snapshot replication setup without dropping and recreating the
snapshot or doing a full refresh, both of which can be
extremely time and resource consuming. This leads to a time
and effort savings of more than 98 percent.

One of the biggest challenges in administration of a snapshot
replication environment (also called materialized view
replication) is the usual maintenance of the snapshot after a
modification of the master table. An example of this is adding
columns or modifying the data type of a column. After a
column is added to the master table, the only way the newly
added column could be replicated to the replication site is by
dropping the snapshot and recreating it. If the master table is
large, the recreation process may take several hours as it brings
all the data over the network. This also requires a large rollback
segment both on the master and the replication sites and it may
lead to the ORA-1555, "Snapshot Too Old" problem if the
table access and rate of change is high. At a certain point, it
may be impossible to even build the snapshot by recreating in
this manner. At that point, the only option would be to do a
full export and import of the table and recreate the snapshot by
using the PREBUILT table option.

Altering the Master Table in a Snapshot Replication
E i i h R i h S h

279

280 Oracle Space Management Handbook

This problem, however, is not present in a multi-master setup.
While the snapshot replication site presents numerous
advantages in setting up and administration, this lack of ability
to alter a master table easily poses real challenges to the DBAs
maintaining the environment when they try to perform
relatively trivial tasks like altering a table to add columns or
change data types. This article presents a way to achieve these
objectives and not having to recreate the snapshot or do a full
refresh.

Background
To best illustrate the technique I'm presenting, let's start with
an example: Suppose we have two databases, PROD and
REPL, denoting production and the replication databases,
respectively. All the activity happens on the production site
whereas the replication site can be used as a reporting database
only (read-only snapshot) or as a separate data activity point
with the changes periodically pushed to master site (updatable
snapshot). The technique described in this article applies to
both situations. (Note: The snapshot replication is also called
materialized view replication. In this example, the terms
snapshot and materialized view are used interchangeably.)

Now suppose there are several tables under schema
ANANDA. This example focuses on a table named TEST1,
with about two million rows and four GB in total size. The
table has two columns, COL1 NUMBER (9) and COL2
CHAR(1000), COL3 CHAR(900). The REPL database has a
snapshot called TEST1 defined on the same table. The master
site has a replication group called TEST1, which has only one
object, TEST1. The replication group is owned by the schema
REPADMIN. To set up the replication, use the script given in

Listing 1 (http://www.dbazine.com/code/Listing1.txt) at the
master site. On the snapshot site, the snapshot TEST1 is
included in a snapshot group called TEST1, owned by schema
MVADMIN. It is assumed that there is a public database link
from each database to the other in the same name and the
global_names parameter in init.ora is set to true.

The goal is to alter the table TEST1 at master site adding a new
column called COL4 with CHAR(1) and changing the column
COL3 to CHAR(1000).

The Usual Method
For the purpose of demonstration, we first need to set up the
replication environment. Listing 2
(http://www.dbazine.com/code/Listing2.txt) contains the
statements to create the snapshot site. For convenience of
discussion, the script is split into several sections, the most
important of which, relevant to this article, is Section 3,
Creating the Snapshot. This section actually creates the
snapshot by getting the data across from the master site over
the network. In case of a small table or during periods of light
load, this approach might work without filling up the rollback
segments or choking the network. However, in large tables, this
method of transferring data might fail. Therefore, we have to
follow a slightly different approach - using prebuilt tables.

In this approach, you have to drop the snapshot TEST1, if it
exists, and create a table by the same name in the schema
ANANDA with the same structure as that table at master site,
but without data. This is easily done by running CREATE
TABLE TEST AS SELECT * FROM TEST1@PROD
WHERE 1 = 2. After running the script in Listing 1
(http://www.dbazine.com/code/Listing1.txt) at the master,

The Usual Method 281

282 Oracle Space Management Handbook

you have to export the table from PROD and import into
REPL. This might take quite awhile, but it will take
considerably less time than the time required for the snapshot
creation method. The table data can be brought over by other
methods, too; e.g., by creating a delimited text file from the
production database and loading it into the replication database
using the SQL*Loader DIRECT path option.

Once the table exists at the replication site, the snapshot can be
created on the table simply by making a small change in the
script in Listing 2
(http://www.dbazine.com/code/Listing2.txt). Change Section
3 of the script as described in Listing 3
(http://www.dbazine.com/code/Listing3.txt). Notice the
clause ON PREBUILT TABLE. This instructs Oracle that
there is a table called TEST1 and that should be used as the
segment for the snapshot named TEST1 and it should not
create a new segment. The rest of the script in Listing 2 simply
make the snapshot ready for replication.

After running the setup for awhile, the table TEST1 was altered
as described above previously — the column COL3 was
changed to CHAR(1000) and a new column COL4 CHAR(1)
was added. These changes need to be reflected at the snapshot
site, too. The recommended approach is to drop the snapshot
at the snapshot site and run the process from beginning again;
i.e., drop the table TEST1, create it, import rows, create
snapshot on prebuilt table and finally generating replication
support. With a large table, this may lead to several problems
like running out of rollback segments, taking considerable time,
and slowing down performance. In our case, it took more than
four hours, including the table alters and, of course, the time
will vary depending on your exact environment.

The Alternative Approach
When the snapshot is created on a table using the PREBUILT
option, the snapshot simply takes over control of the segment
defined for the table. When the snapshot is dropped, the
segment is not dropped; rather it turns the control into the
original table. Since the segment is the same, any data changes
that occurred during the snapshot operation remain in the
segment even after the snapshot is dropped. For example, say,
the value of COL2 in the original table for COL1 = 1 was 'A.'
After the snapshot creation on the table, the snapshot
operation changed the data to 'B' since that was changed to 'B'
at the master site. Subsequently, the snapshot was dropped, and
the segment reverted to a table called TEST1. At this point, the
value of COL2 for COL1 = 1 will still be 'B,' not 'A.' Thus,
data in the segment remains exactly same, as it was the moment
before the snapshot was dropped. This fact is exploited in the
alternative approach.

Since data remains the same, there is no need to drop and
rebuild the table from the master. We will use this trick to let
the replication setup know that the snapshot was never
dropped and so a fast refresh will work. Another detail to take
care of at this time is the use of the already present snapshot
log entries, which are needed for the fast refresh. When a
snapshot is recreated on a prebuilt table, these entries on the
master table are deleted. We will have to store them prior to the
deletion and insert them after the snapshot is ready for
replication.

Detailed Steps
At the master site, the table can be altered using sql.
Logging in as user ANANDA, issue the statements

The Alternative Approach 283

284 Oracle Space Management Handbook

alter table test1 add (col4 char(1);
alter table test1 modify (col3 char(1000));

Since DML is still active on the table, you may have to wait
until the table can be locked exclusively to add and modify
the columns.
At the replication site, we need to stop the replication pull
for awhile by shutting down the job that does it. Logging in
as user MVADMIN, issue
select job from user_refresh where rname = 'TEST1';

Note the job number. Again, as we assumed in the
beginning, the refresh group is named TEST1. Shut down
the job by issuing
exec dbms_job.broken(<jobnumber>,TRUE);
commit;

It's very important to issue a commit here. You will also
have to make sure no current sessions are currently active
by this job. Check that by issuing
select sid from dba_jobs_running where job = <jobnumber>;

If you see any session, wait for it to finish or kill it before
proceeding.
Then, logging in as user ANANDA and issue
DROP SNAPSHOT TEST1;

This drops the snapshot but leaves the table in place. Then
issue
alter table test1 add (col4 char(1);
alter table test1 modify (col3 char(1000));

The rest of the operation has been placed in a script as shown
in Listing 4 (http://www.dbazine.com/code/Listing4.txt).
Most of the script is the same as in the previous approach; the
differences are explained here.

Section 3 is new. When a snapshot is built on an existing table
and replication support is enabled on that, Oracle assumes that
the snapshot has gone through a complete refresh; so it deletes
the snapshot log entries at the master site. This is not
acceptable in our situation, since the master table is undergoing
some DML activity and generating snapshot log entries. Even
if there is no DML, there could still be some unapplied
snapshot log entries that must be preserved. Therefore, we
must move the entries in the master table's snapshot log to a
temporary table called mlog_bak. If the table name is too long,
Oracle uses only the first 20 characters of the name to create
the name of the snapshot log table. Although in this case the
table name is only five letters, to make it generalized, we have
used only the first 20 characters and prefixed it to mlog$_ to get
the name of the snapshot log table.

Sections 4 through 6 are the same as in the previous method.
After the replication support is enabled on the table, the
snapshot log entries preserved earlier need to be restored
back so that they can aid in fast refresh. This is achieved in
Section 7.
After all these steps are executed issue a fast refresh of the
snapshot just to make sure that the fast refresh works.
Logging in as ANANDA issue
execute DBMS_snapshot.refresh('TEST1','F')

This will do a fast refresh of the snapshot using the
snapshot log entries we just restored back. The snapshot is
all set for fast refresh and with the modified table structure.
Finally, you have to re-enable the job broken earlier.
Logging in as MVADMIN issue the following statement.
Use the job number obtained before.
execute DBMS_job.run(<jobnumber>)

Detailed Steps 285

286 Oracle Space Management Handbook

Total elapsed time, including the table alters, was 10 minutes.

Conclusion
As you can see the time to alter the master table was reduced
from four hours to ten minutes, a 98 percent savings in time
and more substantial savings in terms of effort for the DBA.
Of course, your results may vary, depending on the table size
and the network transfer speed. Nevertheless, no matter how
fast the network speed is, unless the table is very tiny, the time
and effort reduction will always be quite substantial.

Index
dba_extents 10, 100, 103,

104_
dba_external_locations . 175_allow_read_only_

corruption 110 dba_external_tables 175
dba_free_space..... 100, 129,

130A
dba_ind_partitions 195, 206 all_repconflict 266
dba_indexes ... 201, 203, 207 all_represolution 266
dba_jobs......................... 266

B dba_repcat 266
dba_repcatlog................ 266bitmap_merge_area_size

................................... 113 dba_repobject 266
dba_repschema 265
dba_repsites................... 266C
dba_segments .. 84, 100, 202 Composite Range-Hash

Partitioning 211 dba_sys_privs 204
dba_tables...... 146, 174, 201 Composite Range-List

Partitioning 211 dba_tablespaces 102
dba_ts_quotas................ 204
dbms_defer_sys.............. 268D
dbms_redefinition 185

db_cache_advice 27, 111,
112, 115

dbms_repcat 267
dbms_reputil 268

db_cache_size. 12, 139, 145,
183

dbms_xplan 228
drop_segments 91

db_create_file_dest 181
db_nk_cache_size 183 F
db_recycle_cache_size .. 145 fet$ 56, 127, 131 dba_block_size 64 filter_predicates................... 228dba_data_files 3, 7, 64

Index 287

288 Oracle Space Management Handbook

G P
global_names. 262, 272, 281 partition_id 228

partition_start.................... 228
H partition_stop..................... 228

pct_free 175Hash Partitioning............ 211
pct_used 8, 175

I pctfree 39, 80, 199
pctincrease......... 42, 95, 133 index_stats 201
pctthreshold 48ini_trans......................... 175
pctused 34, 39 initrans.... 34, 76, 77, 80, 83,

85, 86 pga_aggregate_target ... 114
plan_table 227, 228, 233 iostat 19

RJ
Range Partitioning 211job_queue_processes...... 94,

160, 262, 272 replisys_hist 273
replisys_list 273

L
Slarge_pool........................ 12

seg$ 127, 130 leaf_blocks 194, 202
segstat_with_time 31List Partitioning 211
session_cached_cursors .. 74

M shared_pool 12, 262
sort_area_size........ 113, 158 max_trans 175
sort_work_area.............. 114maxtrans .. 34, 76, 79, 80, 86
statistic_level 27, 33 mlog$_ 285
statistics_level 26, 27, 28, 81
stats$filestatxs............ 21, 22 O
stats$sysstat 21open_cursors 113
sys.fet$ 55, 88 open_links...................... 114
sys.seg$ 47, 88

sys.seg$. 47
sys.tab$ 47
sys.uet$ 55
sys.x$ktfbfe....................... 56
sys.x$ktfbhc...................... 56
sys.x$ktfbue...................... 56

T
tabsys_hist 160
tabsys_list 160
tabsys_sort 160
tabsys_ts 160
temporary_tablespace .. 102,

132
timed_statistics 5, 27
tnsnames.ora.................. 272
tsq$ 127, 130

U
uet$ 56, 127, 131
undo_retention............... 119
user_dump_dest............... 84
user_dump_destination ... 83
utl_file_dir 94, 160, 272

V
v$datafile 2
v$db_cache_advice........ 115
v$filestat............................. 5
v$object_usage 122, 189
v$rowcache 109
v$segment_statistics . 26, 29,

30, 35
v$segstat 26, 28, 29
v$segstat_name................ 29
v$session_wait25, 77, 78, 81
v$sql_plan...................... 122
v$sqltext 105
v$statistics_level.............. 28
v$sysstat..................... 24, 30
v$temp_extent_pool 100
v$temp_space_header ... 100
v$tempfile........................... 2
v$tempstat 5, 100
v$waitstat......................... 41

X
x$ksolsfts.......................... 30

Index 289

	Oracle Space Management Handbook
	Cover

	Table of Contents
	Conventions Used in this Book
	About the Authors
	Foreword
	Section One - Datafiles
	Chapter 1 - Measuring Oracle Segment I/O
	What is Really Going On? by John Weeg
	Theory
	Test It
	What Happens When We Update?
	What Else?
	So What?

	Chapter 2 - Datafile Resizing Tips
	Setting Free Your Space by John Weeg
	Alter Database
	Double Checking the Work

	Chapter 3 - Reducing Disk I/O on Oracle Datafiles
	Oracle Expert Tuning Secrets to reduce disk I/O by Don Burleson
	Oracle tuning and Disk I/O
	Tuning with RAM Data Buffers
	The KEEP Pool
	Locating Tables and Indexes for the KEEP Pool
	The RECYCLE Pool
	Using Multiple Block Sizes
	Disk I/O Tuning
	STATSPACK Reports for Oracle Datafiles
	Conclusion

	Chapter 4 - Measuring Data Segment Statistics
	Digging at the Segment Level : Performance Diagnosis Reaches A Deeper Level by Arup Nanda
	Background / Overview
	Setting the Statistics Levels
	Segment Level Statistics Collection
	Column Explanation

	Examining Detailed Statistics
	Improvements
	Case Study
	Solution
	Conclusion

	Chapter 5 - Optimizing Oracle Physical Design
	Optimal Physical Database Design for Oracle8i by Dave Ensor
	Introduction
	Physical Database Design 101
	What is Physical Database Design?
	Database Block Structure
	Block Size
	Unstructured Data
	Freelists
	Extents
	AutoExtension
	Partitioning
	Index Compression
	Index Organized Tables (IOT's)
	Insert Times
	Retrieval Times
	Application Impact
	Online Table Reorganization
	Temporary Tables
	Application Impact
	Locally Managed Tablespaces
	Transportable Tablespaces
	Conclusions

	Chapter 6 - Verifying Segment Backup Scripts
	Did the Backup Work? by John Weeg
	Problem
	How Do We Know?
	Parsing This String
	Bring It In
	Use It
	Use it Elsewhere

	Chapter 7 - Data Segment Update Internals
	How Much Does an Update Cost? by Jonathan Lewis
	A Brief History of Screen Generators
	What Does It Cost to Update a Column?
	But There's More
	Triggers
	Indexes
	Referential Integrity
	There's Always a Trade-off
	Conclusion

	Chapter 8 - Segment Transaction Slot Internals
	Interested Transaction List (ITL) Waits Demystified by Arup Nanda
	What is ITL?

	What Is an ITL Wait
	Simulation
	How to Reduce ITL Waits
	How to Diagnose the ITL Wait
	What INITRANS Value is Optimal
	Automatic Block Management in Oracle9i
	Conclusion

	Section Two - Tablespaces
	Chapter 9 - Automated Space Cleanup in Oracle
	Automated Space Cleanup in Oracle by Mike Hordila
	Stray Temporary Segments
	Manual Cleanup of Temporary Segments
	Recommendations Regarding Temporary Segments
	Locking

	Problems with Rollback Segments
	Recommendations Regarding Rollback Segments

	Automated Space Cleanup
	Prerequisites
	Overview of the Package

	Setup

	Chapter 10 - Using Oracle TEMP Files
	Temporarily Yours: Tempfiles by John Weeg
	Don't Wait to Create
	Don't Backup
	Don't Recover
	Don't Copy for Standby
	Don't Add Overhead
	Give It a Try

	Chapter 11 - Monitoring TEMP Space Usage
	Who Took All the TEMP? by John Weeg
	Where Are My TEMP Tablespaces?
	Show Me the Objects
	Who Are the Users?
	A Happy Ending

	Chapter 12 - Oracle9i Self-Management Features
	Oracle9i Self-Management Features: The Early Winners by Dave Ensor
	Introduction
	Test Environment
	Self-Management
	Goals
	Examples

	Instance Parameter Management
	Self-Tuning Memory Management
	Memory Made Simple
	PGA Aggregate Target
	Cache Advice
	Automatic Undo Management
	Background

	Rollback Segments
	The Oracle9i Solution
	Database Resource Manager
	Unused Index Identification
	Oracle Managed Files
	Conclusions

	Chapter 13 - Internals of Locally-Managed Tablespaces
	Locally Managed Tablespaces by Jonathan Lewis
	Tablespaces Past and Present
	The Past
	The Present
	Where Are the Benefits?
	Conclusion

	Chapter 14 - Multiple Block Sizes in Oracle9i
	Using Multiple Block Sizes in Oracle9i by Don Burleson
	Indexes and Large Data Blocks
	Allocating Objects into Multiple Block Buffers
	Tools for Viewing Data Buffer Usage
	Creating Separate Data Buffers
	Conclusion

	Section Three - Tables
	Chapter 15 - Automated Table Reorganization in Oracle8i
	Automated Table/Index Reorganization In Oracle8i by Mike Hordila
	When Reorganizing, How Many Extents to Use?
	Possible Reorganizing Strategies
	Assumptions and Experimental Figures
	Some Procedures Related to Table Reorganization
	Important Issues Regarding Table/Index Moving/Rebuilding
	The Behavior of the "Alter Table/Index Move/Rebuild" Commands
	Limitations of the "ALTER TABLE MOVE" Command:
	Manual Object Reorganization
	Step 1
	Step 2

	Automated Object Reorganization
	Prerequisites
	Associated Tables

	Overview of the Package
	Setup

	Chapter 16 - Using External Table in Oracle9i
	External Tables in Oracle9i by Dave Moore
	Example
	Limitations
	Performance
	Practical Applications
	Database Administration

	Chapter 17 - Instructors Guide to External Tables
	An Oracle Instructor's Guide to Oracle9i - External Tables by Christopher Foot
	External Tables
	Tablespace Changes
	Online Table Reorganizations
	Index Monitoring

	Section Four - Indexes
	Chapter 18 - Using Locally-Managed Indexes
	Locally Managed Indexes by John Weeg
	Rebuild in the same Tablespace
	No Fragment
	8 1 to the Rescue
	More Than One
	What Goes Where
	Break Points
	Script
	Conclusion

	Chapter 19 - Sizing Oracle Index Segments – Part 1
	How Big Should This Index Be? by John Weeg
	B-tree Theory
	Estimate Leafs
	Estimate Branches
	Making the Index

	Chapter 20 - Sizing Oracle Index Segments – Part 2
	Is This Index the Right Size? by John Weeg
	Validate Structure
	Dba_Indexes
	Logical Steps for Resizing and Defragging
	All Together Now

	Section Five - Partitioning
	Chapter 21 - Oracle Partitioning Design
	Partitioning in Oracle 9i, Release 2 by Lisa Hernandez
	Introduction
	Background
	Partitioning Defined
	When To Partition
	Different Methods of Partitioning
	Partitioning Of Tables
	Range Partitioning
	Hash Partitioning
	List Partitioning
	Composite Range-Hash Partitioning
	Composite Range-List Partitioning

	Conclusion

	Chapter 22 - Oracle Partitioning Design – Part 2
	Partitioning in Oracle 9i, Release 2 -- Part 2 by Lisa Hernandez
	Introduction
	Background
	Globally Partitioned Indexes
	Locally Partitioned Indexes
	When to Use Which Partitioning Method
	Real Life Example
	Conclusion

	Chapter 23 - Effective Segment Partitioning – Part 1
	Perils and Pitfalls in Partitioning - Part 1 by Arup Nanda
	Plan Table Revisited
	The New Tool DBMS_XPLAN
	Partition Pruning or Elimination
	Partition-wise Joins
	Character Value in Range Partitioning

	Chapter 24 - Effective Segment Partitioning – Part 2
	Perils and Pitfalls in Partitioning - Part 2 by Arup Nanda
	Multi-Column Partition Keys
	Subpartition Statistics
	PARTNAME
	GRANULARITY

	Rule Based Optimizer
	Coalesce vs Merge
	Other Questions
	What about Rebuild Partition and Global Indexes?
	While using partitioning, should you use bind variables?
	How many partitions can be defined on a table?

	Section Six - Replication
	Chapter 25 - Multi-Master Replication
	A Four-phase Approach to Procedural Multi-master Replication by Don Burleson
	Introduction
	Why Consider Oracle Multi-master Replication?
	Oracle Multi-master Replication
	Multi-master Conflicts and Resolutions
	Conflict Types
	Conflict Resolution Mechanisms

	Implementing Procedural Multi-master Replication
	Phase I: Pre-configuration Steps for Multi-master Replication
	Phase II: Set-up REPADMIN User and Database Links
	Phase III: Create the Master Database and Refresh Groups
	Phase IV: Monitoring Multi-master Replication

	Resources for Defining Multi-master Replication
	Conclusion
	References

	Chapter 26 - Replication Management
	Automated Replication Management by Mike Hordila
	Basic Replication
	Automated Replication Management
	Prerequisites
	Associated Tables
	Overview of the Package
	Setup

	Test Environment

	Chapter 27 - Replication Master Table
	Altering the Master Table in a Snapshot Replication Environment without Recreating the Snapshot by Arup Nanda
	Background
	The Usual Method
	The Alternative Approach
	Detailed Steps
	Conclusion

	Index
	Team DDU

